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Abstract. Multivariate multi-way ANOVA-type models are the default
tools for analyzing experimental data with multiple independent covari-
ates. However, formulating standard multi-way models is not possible
when the data comes from different sources or in cases where some co-
variates have (partly) unknown structure, such as time with unknown
alignment. The “small n, large p”, large dimensionality p with small
number of samples n, settings bring further problems to the standard
multivariate methods. We extend our recent graphical multi-way model
to three general setups, with timely applications in biomedicine: (i) Mul-
tiple different views and multiple covariates, (ii) One covariate is time
but alignment is unknown, and (iii) Multiple time-dependent views with
unknown alignment both within and between views.

Keywords: ANOVA, Bayesian latent variable modeling, data integra-
tion, multi-view learning, multi-way learning

1 Introduction

Multivariate multi-way ANOVA-type methods are the default tool for analyzing
data with multiple covariates. A prototypical example in biomedical data anal-
ysis is studying the effects of disease and treatment in populations of biological
measurements. Formulating the data analysis as a linear model makes it possible
to ask if the covariates (“ways”, disease and treatment), or more interestingly,
their interactions have an effect on the data.

In the two-way case, to explain the covariate-related variation in one data
source, say x, the following linear model is usually assumed:

xj |(a,b) = µx + αx
a + βx

b + (αβ)x
ab + εj . (1)
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Here xj is a continuous-valued data vector, observation number j, and the a
and b (a = 0, . . . A and b = 0, . . . B) are the two independent covariates, such
as disease and treatment. The αx

a and βx
b are parameter vectors describing the

covariate-specific effects, called main effects. The (αβ)x
ab denotes the interac-

tion effect; the apparently complicated notation is standard, it simply means a
parameter vector. In the biomedical example this interaction is the most inter-
esting parameter, describing if the treatment has disease-specific effects (cures
the disease). These effects model the variation from the baseline level (called
grand mean) µx. The εj is a noise term. The traditional methods for finding
and testing the statistical significance of the effects of the covariates on the
data are Analysis of Variance (ANOVA) [4] and its multivariate generalization
(MANOVA).

A recurring problem in modern data analyses, especially in biomedical ex-
periments, is that the number of samples n is small and dimensionality p is large.
The “small n, large p” has recently gained increasing attention in the machine
learning community, whereas only a few methods for multi-way modelling have
been reported. The currently popular approaches, multi-task learning and multi-
label prediction that attempt to share statistical strength between related tasks
help if tasks are assumed related, but are not targeted for studying the effects
of multiple independent covariates in the data.

It is evident that with small sample-sizes, harsh dimension reduction is
needed and the modelling should be done in a low-dimensional latent factor
space, say xlat. In addition to trivial approaches such as a prior PCA dimension
reduction, two approaches exist for multivariate multi-way analysis in the case
of “small n, large p”-conditions. The first, intended for modelling the effects of
multiple covariates, is Sparse factor regression [10, 14].

The second, hierarchical generative modelling approach [6] forms factors by
assuming the variables are grouped, and the variation of the latent variables is
generated by the external covariates p(xlat|a, b), in the spirit of linear models.

We will now extend multi-way modelling to three novel tasks which cannot
be solved by standard ANOVA-models, and not easily by supervised regres-
sion/classification either. The associated machine learning problems are illus-
trated in Figure 1.

We first consider multi-way analysis when the data comes from different
sources (“views”) with different domains (has unmatched data spaces). A typi-
cal biological example is using two or more measurement techniques or having
measurements from several tissues of each individual, the underlying experi-
ment having a multi-way experimental setup. We consider the “view” as an
additional “way” (or covariate) in the multi-way analysis. However, since differ-
ent views have different domains, a standard multi-way model is not applicable.
The model extends multi-view learning into Multi-Way, Multi-View learning,
which has plenty of applications in modern molecular biological experiments in
terms of integration of multiple data sources. This first extension has already
been described in [5];. we include it for completeness.



Graphical Multi-Way Models 3

We then extend multi-way learning into cases where, for one of the “ways”,
the covariates have partly unknown structure. We concentrate on time, having an
unknown alignment; an intuitive application is learning of unknown alignments
with Hidden Markov Models (HMM) having linear chains. We consider “time
with unknown alignment” as one covariate in a multi-way model. An example
considered in this paper is having time-series measurements with unknown align-
ment from both healthy and diseased populations. The modelling task is to find,
based on data, the effect of time, the effect of the other covariate(s) (disease)
and, most interestingly, their interaction. The time alignment is learned at the
same time.

As a third extension we consider integrating multiple views in different do-
mains when even the samples are not paired. This almost impossible task be-
comes weakly possible if the experiments are similar in the sense of having a
similar covariate design. An example is having a similar healthy-diseased time-
series dataset with unknown alignments from two species, man and mouse, with
different variable-spaces. We assume and search for some shared covariate-related
behavior in the datasets. We propose “view with unmatched samples” as a co-
variate for an extended multi-way analysis. This makes it possible to evaluate
statistical significance of shared covariate-related behavior, in contrast to having
only view-specific effects (interaction effect of “view” and other covariates).

We choose the generative approach [6] to extend multi-way modelling to the
novel cases, because its hierarchical structuring of the effects acting on latent
variables makes the extensions reasonable. The new modelling elements, the gen-
erative model of Canonical Correlation Analysis (CCA) [1, 7], a standard method
for multi-view learning with paired samples and unpaired dimensions, and the
HMM-model, for time-dependent covariates turn out to be fully compatible with
the generative multi-way modelling approach.

We will call the different types of covariates as follows: Covariates which
can in principle be studied with existing ANOVA-type methods are standard
covariates; examples include disease, treatment, gender. “Time with unknown
alignment” is a special case of a covariate with unknown structure. “View”
is a view-covariate in the case of paired (co-occurring) samples, and “view with
unmatched samples” is a view-covariate in the case of no pairing between the
samples.

The key point why we need to distinguish view-covariates from the stan-
dard covariates is that it actually does not make sense to define main effects
for the view-covariates at all, since the domains of the views are different. How-
ever, it is sensible to define interaction effects between a view-covariate and a
standard covariate (including “time with unknown alignment”). This allows us
to rigorously decompose standard covariate effects into shared and view-specific
effects. Furthermore, this decomposition actually forms the connection between
the different views, allowing the multi-way problem to be formulated in the first
place.

The main message of this paper is that each of the three introduced new
machine learning problems is too complicated to be analyzed with any existing
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Fig. 1. Illustration of the four data analysis tasks in this paper. (a) Standard ANOVA
setup, but with large dimensionality (metabolites) compared to number of samples
(rows). (b) Extension to multiple different data spaces. (c) Extension to time-series
with unknown alignment. (d) The most general extension.
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method. We will show how to conceptualize each of these problems as an ex-
tended multi-way modelling task involving novel covariates. We then introduce
a hierarchical generative model for each problem.

2 Model

We now present a unified framework to each of the novel tasks as an extended
multi-way model. In each case, it turns out that the model can be formulated as
a single hierarchical generative model, which quarantees that uncertainties are
propagated properly between the model parts. We use Gibbs sampling for the
computations.

The models need three components: (1) a regularized dimension reduction to
transform the modelling into low-dimensional latent factor spaces, (2) ANOVA-
type modelling of population priors acting on the low-dimensional latent factors,
(3) a proper structuring of the analysis setup according to the task. The structure
of the tasks is as follows: in the multi-view case (i) the co-occurring sources are
integrated with a generative model of CCA, (ii) in the time-covariate case the
means of the emission distributions of an HMM act as one of the latent effects
while HMM-alignment is done simultaneously, and (iii) in the case of two views
in different domains with no co-occurring samples, the views only share common
latent effects.

2.1 Multi-Way Learning with standard covariates

Multi-way modelling [6] in a low-dimensional factor space requires two parts:
regularized dimension reduction and an ANOVA-model formulated as population
priors on the latent variables. In our model these parts are integrated into a single
generative model, shown in Figure 2 (a). The dimension reduction is done by a
factor analyzer that is regularized to find similarly behaving, correlated groups of
variables and the ANOVA-effects act on the factors, each representing a cluster
of variables.

Regularized Factor analyzer. The basis of the model is a Factor Analyzer
(FA). The hierarchical model implementing the factor analyzer is [6]

xlat
j ∼ N (0, I)

xj ∼ N (µ + Vxlat
j ,Λ) . (2)

Here xj is a p-dimensional data vector, V is the projection matrix, and xlat
j is the

latent variable, Λ is a diagonal residual variance matrix with diagonal elements
σ2

i , µ is the mean vector (parameters), I is the identity matrix and N denotes
the normal distribution with mean being the first argument and covariate matrix
being the second.

Since a standard factor analyzer cannot be used when n � p, we regularize
projection matrix such that each variable comes from one factor only, implying
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Fig. 2. The introduced model variants. (a) The hierarchical latent-variable model for
standard multi-way learning with standard covariates, under “large p, small n” condi-
tions, (b) model for multi-way, multi-view learning, (c) time with unknown alignment,
(d) views with unmatched samples, coupled only by shared time-course (with unknown
alignment) and shared multi-way experimental design.
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a clustering assumption. The cluster indices are drawn from a multinomial dis-
tribution. The ANOVA-effects are then modelled for each cluster of correlated
variables. Assuming the scales of the variables can be different, they need to be
learned from data as well. For simplicity, we use a point-estimate in this paper
for the scales, by scaling the variables to unit variance prior to the analysis. The
number of clusters is selected by predictive likelihood [6]. The computationally
most complex part of all the three model variants is the clustering step, being
O(nKp), where K is the number of clusters. In small n large p conditions, di-
mensionality p is the main bottleneck, and the complexity with respect to it is
linear.

ANOVA-model on latent factors. In the two-way case, the samples have
two observed class covariates, a = 0, . . . , A and b = 0, . . . , B. The ANOVA-
modelling can now be done in the low-dimensional latent factor space,

xlat
j |(a,b) = αa + βb + (αβ)ab + noise. (3)

The ANOVA effects are set as population priors to the latent variables, which
in turn are given Gaussian priors αa, βb, (αβ)ab ∼ N (0, I). Note that the mean
µ is modelled in the actual data space (Equation (2)) and does not appear here.

We are now at the point where ANOVA-modelling is done in the latent
factor space where the linear ANOVA-model acts as population priors. We now
move into the advanced cases where “view”, “time with unknown alignment”
and “view with unmatched samples” are covariates. Gibbs-formulas have been
derived analogously to [5–7] and the standard HMM-formalism, and are omitted
due to space constraints.

2.2 Multi-Way, Multi-View Learning: paired samples

We consider an ANOVA analysis when data comes from different views. If the
data domains of the two views were the same, one might want to write a linear
model

xd = µd + αa + βb + (αβ)ab + γd + (αγ)ad + (βγ)bd + (αβγ)abd + noise,

where a and b are the two standard independent covariates, and d denotes the
view. However, since the different views have different domains in general, a
model cannot be written as such. It turns out that if the samples are paired
(co-occur), it is possible to map the effects from latent effects to the actual data
spaces x and y with unknown (estimated from the data) projections fx and fy

as

x = µx + fx(αa + βb + (αβ)ab) + fx(αx
a + βx

b + (αβ)x
ab) + ε,

y = µy + fy(αa + βb + (αβ)ab) + fy(αy
a + βy

b + (αβ)y
ab) + ε .

Here the fx and fy represent a chain of projections from latent variables into the
actual data spaces, shown in Figure 2 (b), for which the projection matrices are
estimated from the data; we will define them implicitly in Equation (5) below.
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This model now presents a desired decomposition into shared main and inter-
action effects αa, βb, (αβ)ab, and to view-specific main and interaction effects
αx

a, βx
b , (αβ)x

ab. Equations are similar for y. Note in particular that it is not
meaningful to define a main effect for d since it is a view-effect (as discussed in
the introduction), but the possibility to define interaction effects of a standard
covariate and a view-covariate, such as αx

a, allows ultimately the decomposi-
tion of effects into shared and view-specific ones. To our knowledge, there exist
no methods capable of decomposing the covariate effects into shared and view-
specific effects in a multi-way scenario.

We now fit the model into the extended multi-way modelling framework, de-
picted in Figure 2 (b). The integration of different domains takes place in the
low-dimensional latent factor spaces xlat and ylat. These factor spaces can be
integrated by combining the factor analyzers into a generative model of Bayesian
CCA [1, 7]. This introduces a new hierarchy level where a latent variable z cap-
tures the shared variation between the views.

The generative model of BCCA has been formulated [1, 7] for sample j as

zj ∼ N (0, I),
xlat

j ∼ N (Wxzj ,Ψx) , (4)

and likewise for y. Note that here we have assumed no mean parameter since the
mean of the data is estimated in the factor analysis part. The Wx is a projection
matrix from the latent variables zj , and Ψx is a matrix of marginal variances
modelling the source-specific effects not responding to external covariates. The
prior distributions were chosen as in [7] ; Wx has an Automatic Relevance De-
termination (ARD) prior [2]; Ψx has an inverse Wishart prior.

Decomposition into shared and view-specific effects. The decomposition
into shared and view-specific effects is done by adding view-specific latent vari-
ables in addition to the shared ones, and the latent effects acting as population-
specific priors on shared and specific latent variables identify the effects. The
Bayesian CCA assumes that the data is generated by a sum of view-specific zx

and zy, and shared latent variables z, as shown in Figure 3. In practice, the
decomposition in Figure 3 can be implemented easily by restricting a column of
Wx to be zero for the y-specific components and vice versa for x. As a summary
the complete generative model is

α0 = 0,β0 = 0, (αβ)a0 = 0, (αβ)0b = 0
αa,βb, (αβ)ab,α

x
a,β

x
b , (αβ)x

ab ∼ N (0, I)
zj |j∈a,b ∼ N (αa + βb + (αβ)ab, I)
zx

j |j∈a,b ∼ N (αx
a + βx

b + (αβ)x
ab, I)

xlat
j ∼ N (Wx

sharedzj + Wx
specificz

x
j ,Ψ

x)

xj ∼ N (µx + Vxxlat
j ,Λx). (5)
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Fig. 3. The graphical model describing the decomposition of covariate effects into
shared and view-specific ones. The figure expands the top part of Figure 2 (b).

2.3 Time with unknown alignment

We concentrate here on the case of a small number (∼ 10) of replicate time-series
from multiple populations, in the unfavorable conditions of short (∼ 10-20) time-
series and high dimensionality.

We consider “time with unknown alignment” as one covariate in an extended
multi-way model; a particular case is HMM-alignment. The extended multi-way
model with HMM-time as a covariate, is shown in Figure 2 (c). We assume
that the time operates on the latent variables as the other covariates, with the
unknown alignment modelled by HMM. This can be accomplished by having the
HMM emit values for the latent factors. In addition, there is another covariate
effect βb. The model becomes

xlat
j |state(j,t)=s,b ∼ N (αs + βb + (αβ)sb, I). (6)

Here αs is the effect of HMM-time in the multi-way model, that is the mean
in the Gaussian emission distribution of HMM-state s. The βb is the effect
of the other, observed, covariate b, and (αβ)sb is the interaction effect. Here
state(j, t) = s means that time-point t of sample j belongs to state s.

Assignments to HMM states are sampled according to a standard Bayesian
HMM formalism, the prior for the transition matrix of the linear HMM allowing
only self-transitions and transitions to the next state.

In biological case studies where time-series measurements are taken from
multiple populations, e.g. healthy and diseased, there is a need for HMM align-
ment when intervals between measurements are long and irregular within- and
between patients. In addition, patients are assumed to develop to different bi-
ological states at individual times/ages. Previous works [3, 11] have resorted to
training a separate HMM for each population and comparing them afterwards,
additionally restricting to strong feature selection, only allowing favorable n > p-
conditions.
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In our experiments, we will have 5 states, b = 0, ..., 4 of βb-effects for the
diseased, corresponding to the observed disease-development states in the time-
series. For simplicity, we do not consider the interaction effect, restricting to
xlat

j |state(j,t)=s,b ∼ N (αs + βb,I), and simply choose model complexity a priori.
As a summary, “time with unknown alignment”, such as “HMM-time”, can
be seen as one covariate in an extended multi-way model, where the covariate
assignments (alignment to HMM-states), are inferred from the observed data. A
main benefit of building a unified model is that after explaining away the effect
of “aligned time”, αs, one can answer the following statistical question: is there
a difference in the populations, that is; is βb statistically significant for some b?
Earlier HMM approaches training a separate model for each population cannot
fully rigorously answer this question.

2.4 Multiple views without matched samples

Finally, we consider integrating data sources in different domains, without paired
samples, which is a much more difficult problem. In a similar case in [13], the
underlying assumption was an unobserved pairing between the samples, and the
pairing was found by iteratively alternating between searching for pairing and
maximizing dependencies between the sources by CCA. However, the assumption
of latent unknown pairing might be too restrictive in many cases, and the non-
generative solution in [13] cannot easily be extended to the present tasks.

We propose an alternative assumption, allowing to integrate multiple un-
matched data sources under the assumption of shared, underlying multi-way
covariate-related behavior. For brevity, we concentrate in this article on one
standard covariate, say, time with unknown alignment α, and the “view” is the
other covariate. Again, since “view” is a view-covariate, it cannot be defined
at all as a main effect due to data domains being different. However, we can
define an interaction effect of time and “view with unmatched samples”. The
model becomes

x = µx + fx(αa) + fx(αx
a) + ε,

y = µy + fy(αa) + fy(αy
a) + ε , (7)

where αa is the shared effect of time, and αx
a and αy

a are the view-specific time-
effects, and fx and fy are again functional mappings from latent states to actual
data spaces. The possibility to decompose the time-related behavior in the two
datasets into shared and view-specific covariate-related behaviors connects the
views.

To make the translational problem (presented below) more realistic, we con-
sider the time-covariate to be “HMM-time”. This allows us to study more flexible
translational cases with time-measurement having irregular intervals, and time-
spans being different [9], important in cross-species biological applications.

The model can be formulated as a graphical multi-way model with the tech-
niques presented in the previous sections. For simplicity, the view-specific time-
behavior is integrated out with Ψx and Ψy following [7], and we only search
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for the shared effects in the simulations. The graphical model of the problem is
shown in Figure 2 (d). The key difference to the multi-way, multi-view case in
Figure 2 (b) is that since there is no known pairing of samples, there is no latent
variable zj shared by the samples from different views.

The learning algorithm faces a matching problem since a shared time behav-
ior might be identified in, e.g., cluster 1 of x and cluster 3 of y. For the model to
identify the effect as a shared effect, it should be found for the same cluster iden-
tity. We include a Metropolis-Hastings step in our Gibbs sampler that proposes
to switch identities of two clusters, attempting to maximize similar time-related
behavior.

Related work in translational studies A main application is translating
biological findings between experiments on model organisms and actual human
experiments [9, 10]. The common setup is doing a similar experiment (time-series,
same disease) to the two different organisms and comparing the results. High-
dimensional biological measurements usually have different unmatched domains
in different species. Most multi-species approaches [9] are restricted to the subset
of variables that are a priori matched between the species. Since this assump-
tion is restrictive, we have wanted to consider the more general case where the
domains are different, making it possible to use all the data, and while doing so
to actually search for the matching of variables.

3 Results

3.1 Multi-way, multi-view

Generated data. We integrate three data-sources, x, y and u, with pairing
between the samples, which have a two-way experimental setup, generated from
the model of Figure 2 (b). The datasets are 200-dimensional, there are three
clusters of variables in each dataset. The σi = 1 for each variable. The model is
learned by Gibbs sampling, with 2000 samples and 2000 burn-in samples. The
optimal number of clusters is found for each data source separately as explained
in [6], and always correctly recovered. Unless otherwise stated, these parameters
are the same throughout the results section. Effects α = +2, βy = +2 and
(αβ)x = +2 have been generated. We learned 4 components: one shared and
three source-specific. Shared and source-specific α, β and (αβ) are therefore to be
estimated. The model always finds the correct clusterings (data not shown). The
results in Figure 4 show how the model finds the generated effects as a function of
number of samples. According to the results, the model finds the generated effects
with relatively small sample-sizes, and the uncertainty decreases with increasing
sample-size. The shared effect is found with considerably less uncertainty since
there is evidence from both sources. In a typical biological dataset there may be
20-60 samples.
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Fig. 4. The method finds the generated effects α = +2, βy = +2 and (αβ)x = +2
in a three-view, two-way study. The points show posterior means, and lines the 95%
posterior mass of the effects. The posterior distributions have been mirrored to have a
positive mean. A consistently non-zero posterior of the effects indicates a statistically
significant effect. This corresponds to a classical p-value being p < 0.05.

Lipidomic multi-tissue data. We now apply the method on an unpublished
lipidomic lung cancer study, where lipidomic measurements have been taken
from several tissues of mice. There are cancerous and healthy mice, and addi-
tionally half of both populations have been given a test anti-cancer drug. This
is a typical two-way setup with healthy untreated (10 mice), diseased untreated
(10), healthy treated (9), diseased treated (10) mice. The tissues have differ-
ent lipids. We first integrated the lung tissue (68 lipids) with spleen tissue (44
lipids). We learned 3 components, one shared and one for each view. According
to the results in Figure 5 (left), the model finds a shared disease effect α and
a shared treatment effect β. The result shows that the treatment enhances, not
diminishes the effect of the disease, therefore not being effective. In lung, for
instance, a cluster of 12 lipids containing ether lipids known to be co-regulated,
was coherently up-regulated due to disease, and additionally up-regulated by the
treatment. Another cluster of 13 lipids in lung was found down-regulated due
to the disease and additionally down-regulated due to treatment. The lipids of
the down-regulated cluster are thus negatively correlated with the up-regulated
clusters. The effect can be traced back to the clusters of lipids by identifying the
responsible elements in Wx, and to the actual lipids from Vx.

No existing ANOVA-type methods are capable of decomposing covariate ef-
fects into shared and source-specific effects, when sources have different domains.
The possible comparison methods are 1) separate MANOVA-analysis for each
source including a dimension reduction, 2) concatenation of the sources and
MANOVA-analysis. These methods give only an overall p-value for the statisti-
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Fig. 5. In the experiment on multi-tissue data (left), the method finds a disease effect α
and a treatment effect β shared between the two views, spleen (x) and lung (y) tissues.
(right) The shared HMM finds shared effects in two generated datasets (Section 3.3) in
different domain with no paired samples. A growing HMM-time effect was generated
in cluster 2. A consistently non-zero posterior implies an effect found.

cal significance of the effects. We compare the biological result to concatenating
the sources and using 50-50 MANOVA [8], which includes a prior PCA-dimension
reduction. The method gives p-values 0.01, 0.71 and 0.071, for α, β and (αβ),
respectively. The method only finds a statistically significant disease effect, not
finding the effect of treatment, showing the superior behaviour of an integrated
dimension reduction in our model. The main difference is, however, that the
method cannot distinguish whether the effect is shared or source-specific.

3.2 Unknown time-alignment

Generated data. We show results on data generated from the model in Figure 2
(c). There are 5 HMM-states α, 23 replicate time-series from healthy and 21
from diseased population for which there are 3 disease states β. Each time-
series has a length of 5-15 time-points at random times (no matching of time-
points), dimensionality is p = 400. Disease state-type covariates bjt = {1, 2, 3}
are observed for the diseased patients, healthy patients only have HMM-states.
Effects α = 0,+0.5,+1,+1.5,+2 have been generated in the consecutive HMM-
states in the first cluster of α. In the disease states of β, effects β = −0.5,−1,−2
have been generated in the consecutive disease states, equally in the first cluster.
In the other clusters, there are no covariate-related effects, only structured noise
from the model. The model is able to identify the clusters correctly. The results
in Figure 6 (left) show that a proper HMM-alignment is achieved, and the model
found the generated, growing time-behavior α in cluster 1 and especially is able
to separate the correct descending disease-state behavior β related to the known
covariates.

Lipidomic time-series data. We then applied the model to a recently pub-
lished lipidomic dataset [12]. There are 71 healthy patients and 53 patients that
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later developed into type 1 diabetes, there are 3-29 time-points in each time-
series, measured at irregular intervals. In addition, for the patients that later
developed into type 1 diabetes, the progress of the disease (disease state) is ob-
served at each time point and used here as a covariate b, with 5 disease states.
There are 53 lipids. We show results on 2 clusters in Figure 6 (right). The model
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Fig. 6. (left) The HMM-model finds the effect of time with unknown alignment αs in
cluster 1 from two populations of generated data, and is able to separate a disease-
progression type effets β generated in the other population. (right) The HMM-model
separates normal aging αs for clusters of similarly behaving lipids, from effects re-
lated to known disease progression-states in a real lipidomics type 1 diabetes study. A
consistently non-zero posterior shown by box-plots implies an effect found.

was capable of identifying the normal aging effects for clusters of similarly behav-
ing lipids (HMM-time effects), and it was able to separate disease state-related
effects for each cluster. The model found consistent clusters of lipids known to
be co-regulated. In Figure 3 of [12], the data analysis was done by univariate
t-tests for each lipid, and time was separated to bins of length 1 year. Our mul-
tivariate modelling was able to take into account that different individuals enter
age-related metabolic states at largely varying, individual times. In addition, the
model could separate the disease-state related behavior from the normal aging ef-
fects, all done for similarly behaving groups of lipids. Our results were consistent
with those in the paper. In addition, our model suggested that PC(14:0/18:2)
and PC(18:2/16:1) in cluster 4 have a strong down-regulation in the early disease
development states, and might act as early biomarkers of a developing disease.
This was not revealed by the prior analysis. Existing methods are limited to
training a separate HMM for each population, which is an appropriate approach
for classification, but cannot be used to rigorously compare the effects of disease
states in the data under the assumption that normal aging effects have to be
modelled (away) by a HMM-alignment.
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3.3 Views without matched samples

We now show results of multi-way learning when the domains of multiple data
sources are different and samples have no pairing. We consider a non-trivial case
where we have two generated time-series datasets, with irregular lengths and
measurement times where we assume, however, that behavior of HMM-states is
similar. We can now search for similar HMM-behavior in two unpaired datasets
in different domains. We can make the assumption that in addition to view-
specific effects, there is a shared HMM-chain that emits latent variables xlat and
ylat, which in turn generate the actual data to different domains.

We have generated two data sets from the model with 10 and 11 replicate
time-series of irregular lengths between 8-12, and datasets have 100 and 110
variables, respectively. There are 3 clusters in each, and the corresponding xlat

and ylat have been generated according to the shared HMM-chain where the
effects 0,+0.5,+1,+1.5,+2 have been generated to the second factor (cluster) of
α in the five HMM-states of the shared HMM-chain, an x-specific time-effect
in cluster 1, the third cluster (not shown) does not have effects. In this case
study, the specific time effect is integrated out with covariance matrices Ψx and
Ψy. According to the results in Figure 5 (right), the model was able to find
the shared HMM-time-related behavior from different domains without paired
samples, while x-specific effects were integrated out succesfully.

The results of the simple case study show that in the case of underlying shared
HMM-states, connection between two views, even without paired samples, can
be formed by formulating the analysis as an ANOVA-type model over views.
This makes it possible to rigorously evaluate statistical significance of a similar
covariate-related behavior. To our knowledge, such a possibility has not been
proposed in any previous studies. To our knowledge, there exists no comparable
method to this modelling task, except training a separate HMM for each view,
which allows only qualitative comparison of results.

4 Conclusions

We have extended multi-way learning to three novel cases: (i) multi-way, multi-
view learning, where data with paired samples comes from different domains,
(ii) one of the covariates has an unknown structure (iii) data comes from dif-
ferent domains with no pairing of samples, but covariates are shared. In (i) we
have shown how covariate-related behaviour can be decomposed into shared and
view-specific effects, when integrating data sources with paired samples. In (ii)
we have presented a multi-way model where one of the covariates has an un-
known structure which can be learned jointly. In (iii) we have shown that it is
possible to integrate multiple data sources without pairing between the samples,
if the datasets have a similar covariate-structure. We have shown that unified
hierarchical graphical models can be used to structure each case as a graphical
multi-way model.

Each of the presented multi-way models has direct applications for biological
experiments, but they also offer novel possibilities for other application domains.
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We showed that the models are capable of finding ANOVA-type effects from
real and simulated high-dimensional data, even with small sample-sizes. The
biological results were plausible, comparing to previous studies.
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