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Abstract: It is a challenge for current signal analysis approaches to identify the electrophysiological brain
signatures of continuous natural speech that the subject is listening to. To relate magnetoencephalo-
graphic (MEG) brain responses to the physical properties of such speech stimuli, we applied canonical
correlation analysis (CCA) and a Bayesian mixture of CCA analyzers to extract MEG features related to
the speech envelope. Seven healthy adults listened to news for an hour while their brain signals were
recorded with whole-scalp MEG. We found shared signal time series (canonical variates) between the
MEG signals and speech envelopes at 0.5–12 Hz. By splitting the test signals into equal-length fragments
from 2 to 65 s (corresponding to 703 down to 21 pieces per the total speech stimulus) we obtained better
than chance-level identification for speech fragments longer than 2–3 s, not used in the model training.
The applied analysis approach thus allowed identification of segments of natural speech by means of
partial reconstruction of the continuous speech envelope (i.e., the intensity variations of the speech
sounds) from MEG responses, provided means to empirically assess the time scales obtainable in speech
decoding with the canonical variates, and it demonstrated accurate identification of the heard speech
fragments from the MEG data. Hum Brain Mapp 00:000–000, 2012. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

As a fundamental prerequisite for speech perception
and comprehension, our brains have a remarkable ability
to follow the rapidly changing sound sequence of natural
speech. The speech sounds naturally leave traces to the
listener’s brain activity, but still it has remained highly
challenging to identify perceptual correlates of natu-
ral continuous speech in e.g. magnetoencephalographic
(MEG) and electroencephalographic (EEG) signals. The
main reason has been the lack of suitable data analysis
methods for nonaveraged ongoing MEG/EEG signals.
Here we introduce a novel signal-analysis approach that
attempts to extract MEG responses elicited by continuous
speech and even enables us to identify, on the basis of the
MEG signature, the related speech fragment.
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Previously, single words or phrases have been associ-
ated with MEG/EEG responses on the basis of pattern
classification [Guimaraes et al., 2007; Luo and Poeppel,
2007; Suppes et al., 1997, 1998, 1999]; either single-trial or
averaged response waveforms were matched to prototype
waveforms of each class of words or phrases, created by
averaging over tens or hundreds of trials in 3–48 classes.
The most successful single-trial MEG classification so far
was 60.1% (with cross-validation) for nine auditorily
presented words in a set of 900 trials; however, the result
was from a single subject only [Guimaraes et al., 2007].

In natural speech, acoustical features such as pitch,
loudness, and rhythm vary all the time, and hence both
the speech signal and brain activity signal have a complex
dynamic nature with a fairly unpredictable systemic
behavior. Consequently, classification based on prototype
responses to words or sentences may not be an ideal
approach, because the number of possible brain signatures
can grow enormously large for free-running speech. In
this article, we take an alternative approach by modeling
the relationship between the time series of speech signal
and the related brain responses as stimulus-related compo-
nents and features. As an advantage, the features could
then be predicted for any given time instant, even for
words and expressions not heard during the model
training.

MEG and EEG responses are known to be influenced by
the intensity variation of the speech signal (i.e., the speech
envelope). For example, when the sentence ‘‘The young
boy left home’’ was presented 1000 times, the mean peak
correlation between the averaged EEG response and the
speech envelope reached 0.37 [Abrams et al., 2008]. Inter-
estingly, the correlation between EEG response waveform
and the stimulus envelope was related to the comprehen-
sion level of speech presented in different tempos [Abrams
et al., 2008, 2009; Ahissar et al., 2001; Nourski et al., 2009].
The onsets and offsets of phones, syllables and words in
the speech envelope provide information about the rhyth-
micity of speech. The speech envelope also contains proso-
dic cues [Rosen, 1992]. According to behavioral studies,
envelope frequencies below 16 Hz have a crucial role in
speech communication and understanding [Drullmanet al.,
1994a,b; Houtgast and Steeneken, 1985; Shannon et al.,
1995; Smith et al., 2002; Steeneken and Houtgast, 1980].

In this article, we focus on MEG features that contain in-
formation about the temporal structure of heard speech
within time scales of a few seconds. Our subjects were lis-
tening to a news broadcast for 1 h. We searched for MEG
features that would correlate with the time series of the
speech envelope. We further studied how short an MEG
epoch can be and still have a discriminative value about
the speech stimulus. For this purpose, we split the test sig-
nals into fragments and, while increasing the fragment
size gradually in consequent runs from 2 s on, we
attempted to identify the speech fragment that the subject
had been listening to at a given time. The key methodo-
logy here builds on the canonical correlation analysis

(CCA) and on a new Bayesian mixture of CCA’s devel-
oped specifically for this purpose.

MATERIALS AND METHODS

Subjects

Seven native Finnish-speaking healthy subjects (4
females, 3 males, ages 20–41, 2 left-handed) participated in
the study. All subjects reported normal hearing. The MEG
recordings had a prior approval by the ethics committee
of Helsinki and Uusimaa Hospital district, and all partici-
pants gave their written informed consent for the study.

Recordings

Subjects listened to a collection of short news articles
read by a native female Finnish speaker. The articles con-
sidered two general topics [earlier used by Hirsimäki
et al., 2006]. The total duration of the news was 58 min.
The subjects were sitting in a magnetically shielded room
with the head leaning against the inner vault of the MEG
helmet. During a short break in the middle of the session,
the subjects were allowed to leave the shielded room. A
nonmagnetic open-field audio speaker (Panphonics, Tam-
pere, Finland), over 2.5 m away from the subject, pro-
duced a comfortable loudness for the speech sounds. A
map of Europe (72 by 55 cm) was fixed about 1.5 m in
front of the subject for free viewing during the recordings.
The subjects were instructed to listen attentively to the
news reports. For a couple of subjects, a brief alerting
sound was given (about one to three times) during the re-
cording if signs of decreased vigilance were observed in
the continuous video monitoring or eye movement and
eye blink recording. For two subjects, an additional break
was given to prevent drowsiness.

MEG was recorded with a 306-channel neuromagnetom-
eter (Elekta Neuromag, Elekta Oy, Helsinki, Finland). The
recording passband was 0.1–200 Hz, and the signals were
sampled at 600 Hz. Vertical electro-oculogram (EOG) was
recorded but was not utilized in later signal processing.
Four head-position-indicator coils were attached to the
head surface for continuous monitoring of the head
position.

Data Preprocessing

Magnetic interference arising from sources outside the
brain was suppressed by temporal signal space separation
(tSSS; Taulu and Simola, 2006) implemented in the MaxFil-
ter software (Elekta Oy, Helsinki, Finland). The default
parameters of the program were used: 4-s data buffer; 0.98
subspace correlation limit; inside expansion order 8, out-
side expansion order 3; 80 inside and 15 outside harmonic
terms. Continuous head position compensation (200 ms
windows in 10 ms steps minimum) and the conversion of
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the data into the standard head position were also accom-
plished with the Maxfilter software.

The speech envelope was computed by rectifying the
acoustic signal (sampled at 16 kHz) and down-sampling it
with an antialiasing filter to 600 Hz. Although the down-
sampled signal had basically the same sampling rate as
the MEG signal, a minor difference in the internal clocks
of the MEG device and the stimulus computer kept the
signals slightly unsynchronized. The ratio (1.0002) between
the sampling intervals of the audio file and the MEG file
was used to interpolate the audio envelope to exactly
match the MEG sampling rate. Cross-correlation was addi-
tionally used to adjust the true audio envelope and the ref-
erence audio signal (rectified offline) recorded on one
channel of the MEG data-acquisition system. The audio
envelope was transformed by log10(1þx) [Aiken and Pic-
ton, 2008]. Both the envelope and the MEG data were nor-
malized by z-scoring; they were resampled to 25, 50, and
100 Hz sets to enable extracting different frequency ranges
with the CCA models (see the next section).

The analyzed data comprised three sets. A 32-min re-
cording covering one general news topic was split into
two sets, one for training (training set, �20 min) and one
for evaluation of the statistical significance of the CCA
findings (validation set, �10 min). The rest of the data,
comprising another news topic, were used as an independ-
ent test set (test set, 26 min).

Obviously, the stimulus–response relationship governing
brain reactivity during audible speech is disrupted during
long silences. Therefore, to limit violations of the stationarity
assumption of the classical CCA modeling, the data sets
were manipulated by shortening the silence periods down to
25 sampling points (e.g., with 25 Hz sampling frequency the
maximum allowed silence duration was 1 s). Most of the
removed periods were pauses between two news articles.
Instead, short breaks related to, e.g., respiration and text
punctuation remained unaffected. This procedure removed
altogether 5 min of silent periods from the training set, 2
min from the validation set, and 3 min from the test set.

Another reason for removing of the silent periods origi-
nates from the identification procedure (described later)
based on splitting the test signal into fragments. Each frag-
ment is assumed to hold a unique stimulus waveform, and
for fragments of silence this assumption would not hold.

Classical CCA

In our application, the classical CCA [Hotelling, 1936]
was used for modeling the stimulus–response relationship.
With CCA it was possible (i) to find the MEG channels
that respond to the stimulus, (ii) to estimate the response
delay, (iii) to specify the mutually correlating signal com-
ponents from the envelope and MEG signals (i.e., to find
the shared signal components), and (iv) to estimate the
correlation coefficient for these components.

From the data-analysis standpoint, the speech envelope
and the recorded MEG are two paired multidimensional

data sets, say X and Y, and the task is to find statistical
dependencies between the feature vectors x [ X and y [ Y
in a data-driven way. Basically, CCA finds such weighting
(canonical basis vectors ŵx and ŵy) for the two data
vectors x and y that the resulting random variables (called
canonical variates) u and v are maximally correlated. Here,
u ¼ xTŵx and v ¼ yTŵy. In other words, CCA maximizes
the function

q ¼ E uv½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E u2½ �E v2½ �p ¼ E ŵT

x xy
Tŵy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ŵT

x xx
Tŵx

� �
E ŵT

yyy
Tŵy

h ir ; (1)

where q is the correlation between the first pair of canoni-
cal variables. The other pairs can be found in a similar
fashion but with the constraint that all the pairs are uncor-
related. With noisy data, the rank of the data sets X and Y
is typically larger than the number of significantly correlat-
ing canonical variates. Therefore, CCA provides a means
for dimensionality reduction. In other words, the canonical
variates provide a compact representation of the common
variation in the two data sets, discarding much of the
noise present in either feature vector alone. It is, however,
worth noticing that the CCA model assumes a linear stim-
ulus–response relationship over the whole experiment and
that the observations are independent. The former
assumption will later be relaxed in the Bayesian mixture
of CCA models. Deviation from the latter assumption due
to autocorrelation of the observations can lead to overesti-
mation of canonical correlations, but as demonstrated later
with control data analysis, the deviations in our data do
not cause notable effects.

We analyzed the signals in time windows. The feature
vectors were composed of the l successive signal values in
time, e.g., x1 ¼ {x1, x2, : : : ,xl}

T, x2 ¼ {x2, x3, : : : ,xlþ1}
T. The

vector length, and thus all the canonical basis vectors, was
25 points. To let the CCA models be sensitive to different
frequency ranges, three sampling frequencies (25, 50, and
100 Hz) were used in the experiments. Therefore, l ¼ 25
corresponds to windows of 1 s, 500 ms, and 250 ms,
respectively. Larger windows were not used because then
the feature vectors would have contained much redun-
dancy and could have caused problems with numerical
solutions. As the feature vectors consisted of data points
in specified time windows, the canonical basis vectors can
be interpreted as kernels of finite-impulse-response (FIR)
filters and CCA as a tool to find specific correlated wave-
forms (or passbands) in the two signals. Such kernels, as
studied with Fourier analysis, have an intuitive frequency-
band interpretation. Figure 1 gives an example of the basis
vectors.

The delay of MEG responses, with respect to the elicit-
ing sound, was estimated by delaying the MEG signal by
0–500 ms, training the CCA model at each delay, and
finally by evaluating the correlation between the first pair
of canonical variates. This procedure is a multivariate
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extension of cross-correlation analysis. We tested for
the statistical significance of the correlations using
the delay of the maximum correlation. To prevent the cir-
cular inference [Kriegeskorte et al., 2009], the delay was
chosen based on correlation on the training data, but
for significance testing the model was used to predict the
canonical variate time series for the validation data
(which was separate from the final test data used later for
identification). The validation set was divided into 30-s
nonoverlapping segments (corresponding to 17 or more
segments, depending on the subject and the sampling
rate). For each segment, Pearson correlation was calculated
between all (N ¼ 25) pairs of canonical variates. A two-
tailed Wilcoxon signed rank test was used to assess
whether the correlation values of the predicted data devi-
ate from zero with the Bonferroni-corrected significance
level P < 0.05/N. The procedure was repeated for
each individual, for the three sampling frequencies (25, 50,
and 100 Hz), and for each of the 306 channels separately.
This procedure simultaneously revealed the statistically
significant shared signal components between the datasets,
the informative MEG channels, and the physiological
delays.

Bayesian Mixture of CCA Models

While the basic principle of CCA extends to prediction
tasks, the simple model of Eq. (1) is too limited to accu-
rately capture the relationship between the stimuli and the
brain signals. For instance, the model assumes the two
data sources to be jointly stationary over the whole experi-
ment. However, according to our data this assumption
may not hold even within the training set, since pauses in
the speech envelope lead to different dynamics than the
ongoing speech and, strictly speaking, the simple prepro-
cessing steps, such as removing long pauses, are not suffi-
cient to make the signal stationary.

In this section we present a novel model for more accu-

rate modeling of the stimulus–response relationship and
for better-geared predictions of future data. The model
improves on the classical CCA in three respects: (i) it

replaces the stationarity assumption by local stationarity of
short time segments, (ii) it is more robust for deviations
from the Gaussian noise assumption implicit in classical

CCA, and (iii) it is less likely to find spurious correlations
between the data sources (that is, nonexistent stimulus–

response relationships).

Figure 1.

An example of CCA analysis. Data come from a single gradiom-

eter over the right temporal cortex of Subject #2 who showed

the largest correlations in the group. A,B: Two sets of basis vec-

tors are shown. The red lines indicate the MEG and the black

lines the speech-envelope counterparts. The upper pair (A) rep-

resents basis vectors sensitive to 0.5 Hz fluctuations and the

bottom pair (B) to 2.5 Hz fluctuations. The basis vectors may

differ for the two data sources and need not be in the same

phase. On the top of the right column (C), a 10-s piece of the

(logarithmic) speech envelope training data is shown. Below (D

and E), for the same piece of data, the canonical variables corre-

sponding to the basis vectors on the left are presented. With all

training data of this subject, canonical correlation r ¼ 0.37 for

the 0.5 Hz fluctuation, and r ¼ 0.26 for the 2.5 Hz fluctuation.
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The model builds on the Bayesian interpretation of CCA
[Klami and Kaski, 2007; Wang, 2007], formulating the task of
extracting correlations between the speech envelope and the
brain response as a generative latent-variable model. Given
the latent-variable formulation, the above improvements can
be included in the model by extending the generative
description. First, the stationarity assumption is relaxed by
building a mixture of CCA models. Roughly speaking, the
mixture is based on the assumption that different CCA
models are responsible for explaining different clusters in the
data space. The clusters here refer to the temporal data parti-
tions that show different kinds of stimulus–response relation-
ships between the speech envelope and MEG data. The
partitioning of the data into the clusters, training of the dif-
ferent CCA models for each individual cluster, and optimiza-
tion of the various model parameters are done automatically
and in a data-driven way. For a more extensive description
of mixture models, see McLachlan and Peel [2000].

We applied the Bayesian mixture of CCA models for
analyzing the MEG channels found to have the strongest
MEG-speech-relationships with the classical CCA model,
using the same channel-wise response delays and the
same feature-vector compositions as in classical CCA. As
the 25-Hz sampling rate yielded the largest correlations,
we applied it for the further analysis.

The following description of the Bayesian mixture of CCA
models is based on the earlier conference publication of Vii-
nikanoja et al. [2010]. The Matlab implementation is available
from http://research.ics.tkk.fi/mi/software/vbcca/.

The standard CCA formulation implicitly assumes each
set of variables to follow a multivariate normal distribution.
However, this assumption does not hold in practice, espe-
cially for the speech envelope. We thus replace the assump-
tion of Gaussian noise in the generative model by assuming
that the noise follows Student’s t-distribution. The t-distri-
bution is bell-shaped like the normal distribution but has
heavier tails; hence, the outlier data values have a smaller
effect on the model, making it more robust to signal arti-
facts and non-Gaussianity of signals in general.

The complete model, coined Bayesian mixture of CCAs
(Fig. 2), is defined by the conditional probability densities

wk
xjjakx � Nðwk

xjj0;diag ðakx1; :::; akxDÞÞ
akxj � Gðakxjjax; bxÞ
Wk

x � WðWk
xjcx;UxÞ

lkx � Nðlkxj0; bxIÞ
zn � Multinomial ðznjpÞ; so that

XK

i¼1
zni ¼ 1

unjznk ¼ 1 � Gðunjtk=2; tk=2Þ
tnjun; znk ¼ 1 � Nðtnj0;unIDÞ
xnjun; tn; znk ¼ 1 � NðxnjWk

xtn þ lkx; unW
k
xÞ

ynjun; tn; znk ¼ 1 � NðynjWk
ytn þ lky; unW

k
yÞ

Here Nðajb; cÞ denotes the normal distribution with
mean b and precision c evaluated at a, W is the Wishart
distribution, and G is the gamma distribution. The sub-
script k denotes the cluster indices and D denotes the
latent space dimensionality. The random vectors x and y
correspond to the speech envelope and the MEG signal in
temporal windows, the latent variable t encodes the ana-
logs of canonical variates, u implements robustness, z indi-
cates the cluster membership, and the columns of the
projections matrices Wx and Wy define the shapes of the
dependent waveforms.

To avoid the need to manually specify the number of
correlating components for each of the K clusters, we
adopt the Automatic Relevance Determination (ARD) prior
for the projection matrix row vectors pðwk

xjjakxÞ through the
Gamma prior pðakxjÞ for the precisions. With a relatively
noninformative prior for a via ax ¼ bx ¼ 0.1, the precisions
for unnecessary components are driven to infinity during
inference, forcing the components to converge towards
zero vectors with no influence on the model. This proce-
dure improves the specificity of the model as extracting
spurious correlations is discouraged; yet high correlations
are not suppressed by the ARD prior. For the rest of the
hyperparameters, we choose fixed values corresponding to
broad priors (cx ¼ dim(x)þ1, bx ¼ 1) and hence we let the
data determine the model parameters. Finally, Ux is set to
the diagonal matrix cI where the magnitude of the con-
stant c is deduced from the empirical covariance of the
data X, and p is learned by using a point estimate. The pri-
ors related to the other data source y are identical and are
not repeated here.

Figure 2.

Graphical representation of the Bayesian mixture of CCA mod-

els as a plate diagram. The shaded nodes x and y represent the

observed speech and MEG signal windows, respectively, whereas

the non-shaded nodes indicate the latent variables (z, u, t) and

model parameters (the rest). For the purpose of this work, the

most important variable is the latent variable t that captures the

equivalent of canonical variates, a low-dimensional representa-

tion of the stimulus–response relationship. The remaining varia-

bles are described in the main text. The left-most plate indicates

replication over the N samples and the right-most plate over

the K clusters or mixture components of the model.
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Following the Bayesian modeling principles, the predic-
tions are averaged over the posterior distribution of the
model parameters given the data. However, the posterior
distribution cannot be inferred analytically and needs to
be approximated. We adopt the variational approximation
[Jordan et al., 1999] and approximate the posterior distri-
bution by the following factorized distribution:

q Z;U;T; Wf g; Wf g; lf g; af gð Þ

¼
YN
n¼1

qðzn;un; tnÞq Wf g;Wg; lf g; af gÞ;ð

where the term containing the parameters is further factor-
ized as

q Wf g; Wf g; lf g; af gð Þ ¼
Y

i2 x;yf g

YK
k¼1

q Wk
i

� �
q lki
� �

q Wk
i

� �
q aki
� �

:

The individual terms q of the approximation are learned
by minimizing the Kullback-Leibler divergence between
the approximation and the true distribution,

DKLðqðZ;U;T; fWg; fWg; flg; fagÞj
pðZ;U;T; fWg; fWg; flg; fagÞÞ

Given the above factorization, the minimization task
leads to analytically tractable update rules for each of the
distributions q and these update rules are combined into a
single EM-style algorithm.

Speech Fragment Identification

Beyond the correlation and the descriptions of the corre-
lating signal components, we were interested in studying
whether the speech envelope could be predicted from
MEG signals in the time-domain. Specifically, we wanted
to inspect to what extent it is possible to predict from the
MEG signals features of speech envelope at a particular
instant. With CCA-type models we can first learn the cor-
relating subspace that contains the features common to the
two paired data sets (i.e., the canonical variates with the
classical CCA, latent variable t with the Bayesian mixture
of CCA models), and then use the trained model to predict
the feature values in this subspace at certain instances for
a completely new data set. Successful predictions of this
sort would indicate stable and consistent brain responses,
since the prediction can be accurate only if the stimulus–
response relationship is similar over the whole recording.
Furthermore, the model needs to correctly capture the
essential relationships.

We were interested in finding out whether the specific
fragments of the news stimuli could be identified based on
the predicted latent-variable waveforms (for more exten-
sive background and the motivation of this approach, see

Discussion). In more specific terms, the identification task
was to infer the underlying stimulus from an observed
MEG epoch given the 23-min test set of MEG and the
speech envelope data, both split into fragments of equal
lengths (in no particular order). We repeated this analysis
using different fragment lengths, ranging from 2 s to 65 s,
corresponding to 703 down to 21 pieces per the total
speech stimulus. Note that the canonical variate time se-
ries within the fragments were 1 s shorter due to the fea-
ture-vector composition. For each individual fragment of
the MEG variates, the best matching speech-envelope
counterpart was selected by means of correlation, as will
be described below.

For comparison, the identification was carried out both
with the classical CCA and with the Bayesian mixture of
CCA models. In the latter case, both the training and the
validation data sets were used for training. The number of
clusters was originally set to four and the dimension of
the latent signal t was set to equal the number of signifi-
cant CCA components. The automatic relevance determi-
nation, incorporated in the model, was allowed to fine-
tune the dimensionality separately for each cluster (i.e., for
each CCA model in the mixture). The latent-variable t
time series were predicted separately for MEG and for the
logarithmic speech envelope signals. The prediction
resulted in two multidimensional data sets representing
the time series in each dimension of t predicted for each
cluster. We call these data sets canonical variates of speech
and canonical variates of MEG. In addition to t, also the
dominating cluster was predicted at each time instant on
the basis of speech envelopes that better discriminate sus-
tained speech from pauses than does the MEG signal.

The pairs of canonical variate time series were predicted
for the testing data within each fragment. Pearson correla-
tion was calculated between all the i–j pairs, representing
the fragment with the canonical variates of MEG and the
fragment with the canonical variates of speech, respec-
tively. Correlation was calculated for each signal dimen-
sion and of these the largest was selected as the
representative value of the i–j pair correlation. Given the
fragment i of canonical variates for one channel of MEG,
and fragment j of the speech variates, the Pearson correla-
tion was calculated between the corresponding time series
in the matrices and the largest value was selected for fur-
ther processing. We did not calculate the correlation
between all corresponding time series, but only between
those that corresponded to the dominating cluster (>50%
of the fragment length), i.e. to sustained speech. The pro-
cedure was repeated for 30 MEG channels (except for Sub-
ject 7 who had only 24 significant channels) as ranked by
the correlations of classical CCA. We used the median of
these 30 values to find the maximally correlating ij pair. If
this value was largest for i ¼ j, the identification was con-
sidered as correct. We note that the way of combining the
multichannel data was an ad hoc solution, chosen as the
first choice tried and not optimized to prevent the circular
inference [Kriegeskorte et al., 2009]. Figure 3 illustrates
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this procedure. With the classical CCA, the procedure was
basically equivalent but simpler, because the stimulus–
response relationship was modeled with only one CCA
model. Table I outlines the main analysis steps as pseudo-
code for both modeling approaches.

The Binomial test was used to assess, for each subject,
whether the number of correct identifications is statisti-
cally significantly (P < 0.05) higher than would be
expected given a series of random identifications (n trials
equals the number of fragments; the probability of a ran-
dom correct identification is 1/n). As the test was repeated
for individual subjects, the Bonferroni correction was
applied. The significance was assessed separately for each
fragment size.

RESULTS

MEG Responses to Continuous Speech

Figure 1 illustrates the stimulus–response relationship
between speech sounds and MEG signals, modeled sepa-
rately for the pairs of each individual MEG channel and
the speech envelope by the classical CCA; this analysis
resulted in estimates of channel-wise response delays, cor-
relating waveforms (canonical variates) and their correla-
tion coefficients.

Figure 4 summarizes the results. Statistically significant
correlations (P < 0.05, correlation > 0.1) with the stimulus
envelope were found in lateral planar gradiometer and
magnetometer channels. No systematic hemispheric domi-
nance was observed. The canonical basis vectors often rep-
resented narrow frequency bands throughout the 0.5–
12 Hz range (Figs. 1 and 4). However, the low frequencies
below 3 Hz were dominating: they involved more chan-
nels than the higher frequencies and gained the maximum

Figure 3.

Schematic illustration of the main identification steps: (i) Canoni-

cal variate time series for test data were predicted both for

speech envelope data (tS) and for MEG data (tM) and divided

into fragments indexed by j for speech and i for MEG. (ii) Cor-

relation was calculated between tM in the fragment i and tS in

fragment j. The procedure was repeated for the 30 significant

MEG channels. If the median correlation value over the channels

was the largest when i ¼ j, the identification was considered

correct. The matrix in the figure represents the median correla-

tion values as gray-scale between fragments i and j when the

number of fragments was �40. This number was used as a

parameter in the identification procedure.

TABLE 1. Algorithm summarizing the main

analysis phases
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correlations > 0.3. The correlation maximum in the MEG
signal typically occurred with about 150-ms delay (Fig. 5)
with respect to the stimulus envelope.

MEG channels with statistically significant correlations
were selected for further analysis with the Bayesian mix-

ture of CCA models. Importantly, if the stimulus–response
relationship was not consistent throughout the recording,
at this stage separate CCA models were automatically
trained for different conditions. As a result, the time series
were modeled with mixtures of four CCA models. As a

Figure 4.

MEG responses to speech, from the classical CCA. A: Topo-

graphic maps of 306 MEG sensors (nose upwards). The top

panel displays channels responding to AM frequencies � 3 Hz

and the bottom panel to > 3 Hz. Statistically significant canoni-

cal correlations exceeding 0.1 are marked with red dots. B:

Left: The frequency response of the canonical basis vectors of

MEG in color scale (arbitrary units), pooled over the seven sub-

jects and sorted by the peak frequency. Right: Pooled correla-

tions as a function of the peak basis vector frequency. In (A) and

(B) the results are from data resampled to 25 Hz (sampling fre-

quency Fs; see text for details). C: Corresponding correlations

with the two other sampling frequencies. D: MEG channels pass-

ing the significance limit in the control data analysis. The maxi-

mum correlation of any of these channels was 0.055.

r Koskinen et al. r

r 8 r



parameter of the algorithm, this number of clusters was
considered sufficient, because typically only one cluster
was dominating for 80–83% of the time (minimum 43%) in
the training data (Fig. 6). (In the testing data, the dominat-
ing cluster was also predicted with the result that one sin-
gle cluster covered the data 94–100% of time). The rest of
the models were related to shorter periods, such as pauses
in speech. All these learned CCA models were used in the
next stages of the analysis.

Control Data Analysis

To rule out the possibility that the findings would be
due to some artifacts—such as induced magnetic fields
from the stimulus system, faults in the recording set-up,
or spurious effects of data processing—we did a recording
with a MEG phantom [Elekta Oy, Helsinki, Finland; e.g.
Taulu et al., 2004] using the same stimuli and analysis as
with our human subjects (training set and test set). Addi-
tionally, we reanalyzed the human recordings by reversing
the speech envelopes in offline analysis. In these settings,
the statistically significant correlations between speech-en-
velope and MEG signals were maximally 0.055, which is
low compared with the maximum correlations of 0.37 in
the original setting with classical CCA. Moreover, the cor-
responding MEG channels were topographically scattered
without any systematic clustering to certain brain region,
in contrast to the actual human recordings (Fig. 4D). The
result was further confirmed by training the Bayesian mix-
ture of CCA models with the phantom data. Predictions
for the training data showed maximal correlation of 0.032
(with the dominating cluster), compared with 0.279 in the
human subjects. Thus, the results with the control data
were not consistent with the physiological findings as was
expected given that we used a nonmagnetic speaker more
than 2.5 m away from the subject. To be on the safe side,
only those MEG channels that showed correlations above

0.1 with the classical CCA were selected for the
identification.

Identification of the Speech Fragments

Our objective was to infer the correct stimulus–response
pair (i.e., MEG and speech envelope counterparts) given
the 23-min test data (not used for model training) split
into fragments of equal lengths (in no particular order).
The fragment durations ranged from 2 to 65 s. Thus, the
identification performance was assessed with data sets
divided to 703 down to 21 pieces, respectively.

The identification performance was consistent in six out
of seven subjects (Fig. 7). The data of Subject 7 showed
considerably worse performance (the outlier in Fig. 7A),
and the subject was excluded from the following statistical
analyses. The 90% (median) correct identification was
exceeded with 40-s fragments, and the identification
reached 100% (median) with 55-s fragments (with the
Bayesian mixture of CCA models). For all fragment
lengths, the results with at least five correct identifications
are statistically significant (P < 0.05; Bonferroni corrected)
according to the subject-specific Binomial test. For all frag-
ments longer than 5 s, the accuracy of all subjects differs

Figure 5.

The estimated delays of MEG responses for the three sampling

frequencies used, pooled over the channels with significant

canonical correlations of the seven subjects. The box-plot repre-

sents the 25th, 50th, and 75th percentiles and the whiskers the

extent of data.

Figure 6.

An example of the dominating cluster estimation. Different clus-

ters here represent different stimulus–response relationships

between the speech envelope and one MEG channel. Note that

in the figure, one time instant t in the cluster data represents

window t � 0.5 : : : t þ 0.5 s in the speech and MEG data. Appa-

rently, cluster #1 represents the epochs of sustained speech; the

other clusters represent pauses or transition periods from sus-

tained speech to pauses and vice versa.
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statistically significantly from chance, clearly demonstrat-
ing successful identification. Even for the shortest 2-, 3-,
and 5-s fragments, the accuracy was significant for some
subjects (5/6, 6/6, and 6/6 for the classical CCA model
and 1/6, 5/6, and 5/6 for the Bayesian mixture of CCAs,
respectively for the three fragment lengths).

For comparison, the same identification procedure was
carried out with control data (reversed speech signal for
all seven subjects, and empty-room measurement) from
those MEG channels that passed the significance tests
(without the requirement for the canonical correlations to
exceed 0.1). Only the classic CCA modeling was used. No
statistically significant identification accuracies were
obtained for any of these control scenarios, irrespective of
the fragment length.

To confirm that the identification performance depended
on the fragment size and was not a spurious function of
the number of fragments, we re-assessed the data of Sub-
ject 1 with the Bayesian mixture of CCA models by limit-
ing the number of fragments to 21 with all fragment sizes.
The identification was repeated 50 times for each fragment
size, each time with a randomly chosen set of 21 separate
fragments (Fig. 7B). The results were similar to those in
Figure 7A, which supports the length of the fragment,
rather than the number of the fragments, as the decisive
parameter affecting the identification performance.

DISCUSSION

MEG Responses to Continuous Speech

We searched for MEG signal features that correlate with
the envelope of the heard speech. Both signals shared

components, suggesting that MEG signals of the auditory
cortex reflect the envelope of speech sounds. The shared
components (i.e., the canonical variates) showed fluctua-
tions at 0.5–12 Hz, which are important for speech com-
prehension [Drullman et al., 1994a,b; Houtgast and
Steeneken, 1985; Shannon et al., 1995; Steeneken and Hout-
gast, 1980].

Luo and Poeppel [2007] recently suggested that speech
affects the phase of the listener’s MEG theta band (4–8 Hz)
oscillations, corresponding to the syllabic rate of speech,
and Aiken and Picton [2008] also suggested that the
speech envelope is reflected in EEG mainly between 2 and
7 Hz, with a peak at 4 Hz. Our current results suggest that
the correspondence with the speech envelope may extend
considerably beyond the theta band and syllabic rate, to
fluctuations below 3 Hz likely corresponding to words
and sentences, as well as short pauses between them. The
observed delays of MEG responses (�150 ms) are in agree-
ment with previous data [Aiken and Picton, 2008]. The
prominence of the slowest frequencies in our results is
concordant with Bourguignon et al., [2011] who, studying
the coupling between listener’s MEG and the f0 of the
voice recorded with an accelerometer attached to the read-
er’s throat, found the strongest coherence at about 0.5 Hz.

Identification of the Speech Fragments

We were interested in determining the time scales at
which natural speech can be identified from the listener’s
brain activity. More specifically, we wanted to find out
whether the heard speech can be identified from the listen-
er’s MEG signals at word, sentence or passage level. Thus,
CCA and the Bayesian mixture of CCA models were used

Figure 7.

A: The performance of the speech-fragment identification for

each of the seven subjects using the Bayesian mixture of CCA

models (red) and with the classical CCA (black). Points with

‘‘x’’-signs are outliers that originate from the Subject 7 data. The

dashed line marks the median performance, and the solid line

represents the minimum level for statistically significant identifi-

cation (P < 0.05). B: Subject 1 data was reassessed by repeating

the identification procedure 50 times with randomly chosen set

of 21 separate fragments. The boxplots represents the 25th,

50th, and 75th percentile and the whiskers mark the extent of

the correctly identified fragments. C: The testing data of 23 min

were divided into consecutive time frames of equal length that

determine the maximum number of fragments.
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for predicting the canonical variates for separate testing
data. We assessed the time scales of the predicted time
series empirically by searching for the smallest fragment
size valid for speech identification.

As the characteristics of freely running speech vary all
the time, even short speech fragments differ from each
other. For reliable identification, also the corresponding
MEG signals need to have unique signatures, and ulti-
mately the minimum fragment length sufficient for identi-
fication will depend on the similarity of the MEG and
speech envelope waveforms. Because of the high variabili-
ty of unaveraged MEG signals, at least 2–3-s epochs were
needed to guarantee distinctive stimulus-related signal
variation that resulted in above chance-level identification
of the fragment, corresponding to the time scale of senten-
ces or a few words in speech. This happened even though
the correlation values were modestly below 0.3. Instead,
fragments of tens of seconds of duration were identified
reliably; the accuracy exceeded 90% with the fragments of
40 s or more. As the largest correlations of the shared com-
ponents occurred in frequencies below 3 Hz, it is likely
that the identification also was influenced mostly by these
low frequencies. Thus, in the assessment of the temporal
accuracy of MEG responses, determining the valid time
scales for the speech identification offered a complemen-
tary and intuitive aspect that was not directly obtainable
from the correlation values.

Modeling the Stimulus–Response Relationship

Pattern classification methods have an important role as
the first step in revealing perceptual correlates from the
multivariate brain signals [e.g., Cox and Savoy, 2003;
Dehaene et al., 1998; Haxby et al., 2001]. A more recent de-
velopment, especially with fMRI recordings, has consid-
ered encoding models (or forward models) that describe
stimulus-related activity in small volume elements, and
decoding models (inverse models) that infer characteristics
of the stimulus on the basis of the brain responses [Thirion
et al., 2006; Friston et al., 2008; Naselaris et al., 2011]. For
example, based on the knowledge of visual cortex func-
tion, Kay et al., [2008] were able to build up an encoding
model by first decomposing natural images to Gabor
wavelet pyramids that could be utilized to predict the
response in individual voxels by linear regression models.
The predicted responses were compared with real record-
ings to identify which one picture in the set a person had
seen. In their following work [Naselaris et al., 2009], natu-
ral pictures could be partially reconstructed from the brain
activity using the decoding models. Stimulus reconstruc-
tion has been adopted also e.g. by Miyawaki et al. [2008]
and Thirion et al. [2006].

Note that since the identification used by Kay and col-
laborators was based on the correlation between predicted
and measured brain responses, the most decisive factor
was the goodness of the encoding model. In identification,

each sample is assigned to a distinct label and the used
data are not necessarily included in the training set. In
classification, to the contrary, the brain responses are
assigned to one of few known categories, each explicitly
presented in the training data. For more detailed compari-
son between identification and classification, see Kay et al.
[2008].

In our work, CCA-type models were adopted to
describe the stimulus–response relationship and to predict
instantaneous values of the canonical-variate time series.
CCA can be seen as a data-driven approach to find shared
signal subspaces where the two multivariate data sets cor-
relate maximally. In the context of encoding and decoding,
CCA appears as a special case because of its bidirectional
nature. As the intermediate shared signal components
(canonical variates) were predicted from both the MEG
and speech signal directions, part of CCA behaves as an
encoding model, and another part as a decoding model.
Thus, the shared components can have different interpre-
tations depending on the direction of prediction; they
reflect the brain responses to speech stimuli, but equally
well they can be considered as a partial reconstruction of
the heard speech signal. It is important in practice that the
decoding and encoding parts of the trained models can be
used independently for prediction on new data.

The ability of the models to find shared signal compo-
nents is generally affected both by the validity of the line-
arity and other modeling assumptions, and by the
consistency and the temporal precision of the brain
responses in following the speech envelope. Therefore,
positive findings here imply that the modeling assump-
tions should hold and the brain responses should stay
relatively stable at least to the degree where finding the
linearly related and statistically significant shared signal
components becomes possible.

In our CCA implementation, the feature vectors consisted
of data points in sliding windows. Thus, our analysis has
similarities with wavelet analysis and FIR filtering, provid-
ing intuitive frequency-domain interpretation for the shared
components. Potentially, highly correlating variables in ei-
ther feature vector set could be a pitfall in CCA analysis.
Autocorrelation between the observations might result in
overestimated canonical correlations, but our control analy-
sis showed that this was not the case. Although control
data contained observations with similar autocorrelation as
the physiological data they did not reveal significant canoni-
cal correlations. These low correlations indicate that the pos-
sible autocorrelations of the observations, deviating from
the independence assumption of both classical CCA and the
Bayesian mixture of CCA, are unlikely to result in spurious
correlations. Moreover, canonical models were successfully
used for prediction where correlating variables do not harm
the performance, and tested on new data where biases
would not be able to improve performance.

The classical CCA was relatively fast to train and we
found it suitable for screening the responding MEG chan-
nels, response latencies and signal components. For
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identification, the classical CCA and the new Bayesian
mixture of CCA models were equally suitable. However,
the appearance of multiple nonempty clusters in the
trained Bayesian mixture of CCA models favors our
hypothesis that the data as a whole were not stationary. In
case that the speech envelope and the MEG response were
jointly stationary throughout the recording, the relation-
ship would be modeled with a single cluster leaving
excess clusters unused. Thus, as a main advantage, our
method was used to automatically segment the data and
to learn different CCA models to those time spans that
showed dissimilar stimulus–response relationship.

Previously, CCA has been applied to find voxel clusters
of fMRI data that show correlation with stimulus (features
or categories) or with the represented task. For example,
voxels related to memory tasks [Nandy and Cordes, 2003],
subjective ratings of movie features [e.g., Ghebreab et al.,
2007], features of natural images [Hardoon et al., 2007],
different stimulus modalities and audio-spectrogram fea-
tures [Ylipaavalniemi et al., 2009] have been found with
CCA. Moreover, the CCA approach has been applied in
multimodal data fusion, i.e., relating fMRI with EEG
evoked response data [Correa et al., 2010] or with MEG
frequency components [Zumer et al., 2010].

Limitations of the Study

For simplicity, the current data were preprocessed to
slightly deviate from natural conditions: the durations of
long silent periods, mainly corresponding to pauses
between two news articles, were reduced. This approach
was taken because in the identification, the basic assump-
tion of unique signal representation in each data fragment
would be violated by long silent periods in the data. The
preprocessing was also needed for the classical CCA
modeling that, unlike the introduced Bayesian mixture of
CCAs, is affected by the different relations between the
MEG signal and the stimulus during the silent periods
and during the speech. As the Bayesian mixture of CCA
models can automatically learn different models for these
conditions, pauses or other deviations from stationarity do
not harm the training. Thus, the mixture modeling would
be more preferable over classical CCA when truly natural
speech is used without such preprocessing.

CONCLUSION

We found significant shared signal components (canoni-
cal variates) between the speech envelope and the MEG
signals arising from the auditory cortices. The shared com-
ponents showed narrow-band fluctuations between 0.5
and 12 Hz, and the largest correlations (>0.3) were found
below 3 Hz. Successful linear modeling, based on CCA
and the Bayesian mixture of CCA models, suggested that
the brain responses to continuous speech stayed relatively
stable throughout an hour-long recording period. Notably,
since the shared components were time series (temporal
signals), the modeling approach enabled continuous pre-

diction of the speech signal features based on MEG record-
ings, i.e., partial reconstruction of the speech envelope
from MEG responses even for speech not presented during
model training and thereby identification of speech seg-
ments even as short as 2–3 s. To evaluate the temporal
precision of the canonical variates and the informativeness
of the instantaneous predictions, we split the test signals
into equal-length fragments and investigated in repeated
runs how short speech fragments could be identified from
the MEG data. Our findings provide a novel approach to
study the neuronal correlates of continuous speech signals
and their envelope characteristics.
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