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Abstract. In kernel-based machine learning algorithms, we can learn a
combination of different kernel functions in order to obtain a similarity
measure that better matches the underlying problem instead of using
a single fixed kernel function. This approach is called multiple kernel
learning (MKL). In this paper, we formulate a nonlinear MKL variant
and apply it for nuclei classification in tissue microarray images of re-
nal cell carcinoma (RCC). The proposed variant is tested on several
feature representations extracted from the automatically segmented nu-
clei. We compare our results with single-kernel support vector machines
trained on each feature representation separately and three linear MKL
algorithms from the literature. We demonstrate that our variant obtains
more accurate classifiers than competing algorithms for RCC detection
by combining information from different feature representations nonlin-
early.

Keywords: multiple kernel learning, renal cell carcinoma, support vec-
tor machines.

1 Introduction

Empirical success of kernel-based machine learning algorithms such as support
vector machines (SVMs) is very much dependent on the kernel function used.
Kernel selection is generally handled by choosing the best-performing kernel
function among a set of kernel functions on a separate validation set. Instead of
using a single fixed kernel function, multiple kernel learning (MKL) algorithms
learn a combination of different kernel functions in order to obtain a similarity
measure that better matches the underlying problem [8].

Most of the MKL algorithms proposed in the literature combine the kernels
linearly (i.e., linear sum, convex sum, and conic sum) [1,12,14]. Similar to non-
linear classifier combination rules, we can also combine kernels nonlinearly to
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obtain better kernels [5,7,13]. We formulate a nonlinear MKL variant derived
from [5] and test it on cell nucleus classification of renal cell carcinoma (RCC)
using tissue microarray (TMA) images by comparing it with single-kernel SVMs
and linear MKL algorithms. Our experiments demonstrate that although it is
more costly to use the proposed nonlinear MKL approach, the increase in accu-
racy is worth its computational complexity.

The paper is organized as follows: Section 2 introduces the data set used in this
study. We explain the methods applied in Section 3 and give our experimental
results in Section 4. We conclude the paper in Section 5.

2 Data Set

Cancer tissue analysis consists of several consecutive estimation and classifi-
cation steps which require intensive laboratory practice. The TMA technology
enables studies associating molecular changes with clinical endpoints [11]. In this
technique, 0.6 mm tissue cylinders are extracted from primary tumor blocks of
hundreds of different patients, and are subsequently embedded into a recipient
paraffin block. Such array blocks can then be used for simultaneous analysis of
primary tumors on DNA, RNA, and protein level.

In this work, we consider the computer based classification of tissue from RCC
after such a workflow has been applied. The tissue has been transferred to an
array and stained to make the morphology of cells and cell nuclei visible. Current
image analysis software for TMAs requires extensive user interaction to prop-
erly identify cell populations on the TMA images, to select regions of interest
for scoring, to optimize analysis parameters and to organize the resulting raw
data. Because of these drawbacks, pathologists typically collect the TMA data
by manually assigning a composite staining score for each spot. Such manual
scoring can result in serious inconsistencies between data collected during differ-
ent microscopy sessions. Manual scoring also introduces a significant bottleneck
that limits the use of TMAs in high-throughput analysis.

The manual rating and assessment of TMAs under the microscope by pathol-
ogists is quite inconsistent due to the high variability of cancerous tissue and
the subjective experience of humans, as shown in [6]. Therefore, decisions for
grading and/or cancer therapy might be inconsistent among pathologists. With
this work, we want to contribute to a more generalized and reproducible system
that automatically processes the TMA images and thus helps pathologists in
their daily work.

In a previous study, an automated pipeline of TMA processing was already
proposed, concentrating on the investigation of various image features and asso-
ciated kernels on the performance of an SVM classifier for cancerous cells [15].
In this work, we follow this workflow (see Fig. 1) and extend the nucleus clas-
sification using different MKL strategies to combine information from multiple
sources (in our case different representations). By considering different types of
features, in Section 4, we show that nonlinear MKL reaches significantly better
accuracies than linear MKL algorithms and single-kernel SVMs.
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Fig. 1. One key point in the automatic TMA analysis for RCC is the nucleus classifi-
cation. Nuclei are eosin stained and visible in the TMA image as dark blue spots. We
want to do the classification of cell nuclei into cancerous or benign, which is recently
done by trained pathologists with their eyes. The automatic approach comprises nu-
cleus detection on the image, the segmentation of the nuclei and the classification, all
based on training data labeled by two human experts.

2.1 Tissue Micro Arrays

Tissue Micro Arrays comprise several hundreds of roundish 1mm spots on one
carrier plate. Each spot is a small piece of tissue, consisting of several hundreds
cancerous and healthy cells. The morphological structure of the cells is made
visible under light microscope by eosin staining. Further, proliferating cell nuclei
expressing the protein MIB-1 (Ki-67 antigen) are immunohistochemically made
visible by brown staining.

The TMA spots are scanned and stored for processing. The images are three
channel color images of size 3000 px × 3000 px. The labeled dataset comprises
eight tissue spots from eight patients, each showing 100–200 cells (see Fig. 2).

The TMA images are independently labeled by two pathologists [6]. Therefore,
locations and disease states (cancer/non cancer) of each cell in the TMA image
are known. From eight labeled TMA images, we extracted 1633 nuclei-patches
of size 80 px × 80 px. Each patch shows a cell nucleus in the center (see Fig. 3).
1273 (78 per cent) from the nuclei form our data set, where the two pathologists
agree on the label: 891 (70 per cent) benign and 382 (30 per cent) malignant
nuclei.

2.2 Image Normalization and Patching

To minimize illumination variances among the scans, the TMA images were
adjusted in contrast. For classification of the individual nuclei, we extracted
patches from the whole image such that each 80 px × 80 px patch has one
nucleus in the center (see Fig. 3).
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Fig. 2. Top: One 1500 px × 1500 px quadrant of a TMA spot from a RCC patient.
Bottom: A pathologist exhaustively labeled all cell nuclei and classified them into
malignant (black) and benign (red).
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2.3 Segmentation

For graphcut segmentation [3], the gray intensities were used as unary potentials.
As cell nuclei tend to be roundish, the binary potentials were linearly weighted
based on their distance to the center to prefer roundish objects (see Fig. 3). The
border of the segmented nuclei was used to calculate several shape features as
described in the following section.

Fig. 3. Two examples of nucleus segmentation. The original 80 px × 80 px patches are
shown, each with the corresponding nucleus shape found with graphcut.

2.4 Feature Extraction

For training and testing the various classifiers, we extracted several histogram-
like features from the patches (see Table 1).

3 Methodology

The main idea behind SVMs [16] is to transform the input feature space to
another space (possibly with a greater dimension) where the classes are linearly
separable. After training, the discriminant function of SVM becomes f(x) =
〈w, Φ(x)〉 + b, where w is the vector of weights, b is the threshold, and Φ( · )
is the mapping function. Using the dual formulation and the kernel trick, one
does not have to define this mapping function explicitly and the discriminant
function can be written as

f(x) =
N∑

i=1

αiyik(xi, x) + b

where k(xi, xj) = 〈Φ(xi), Φ(xj)〉 is the kernel function that calculates a simi-
larity measure between data instances. Selecting the kernel function is the most
important issue in the training phase; it is generally handled by choosing the
best-performing kernel function among a set of kernel functions on a separate
validation set.

In recent years, MKL methods have been proposed [8], for learning a combi-
nation kη of multiple kernels instead of selecting only one:

kη(xi, xj ; η) = fη({km(xm
i , xm

j )P
m=1}; η) (1)
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Table 1. Features extracted from patch images for training and testing. All features
are histograms.

Name Feature Description

ALL Patch Intensity: A 16-bin histogram of gray scaled patch.

FG Foreground Intensity: A 16-bin histogram of nucleus.

BG Background Intensity: A 16-bin histogram of background.

LBP Local Binary Patterns: This local feature has been shown to bring con-
siderable performance in face recognition tasks. It benefits from the fact
that it is illumination invariant.

COL Color Feature: The only feature comprising color information. The col-
ored patch (RGB) is rescaled to size 5 × 5. The 3 × 25 channel intensities
are then concatenated to a feature vector of size 75.

FCC Freeman Chain Code: The FCC describes the nucleus’ boundary as a
string of numbers from 1 to 8, representing the direction of the boundary
line at that point [9]. The boundary is discretized by subsampling with
grid size 2. For rotational invariance, the first difference of the FCC with
minimum magnitude is used. The FCC is represented in a 8-bin histogram.

SIG 1D-Signature: Lines are considered from the object center to each bound-
ary pixel. The angles between these lines form the signature of the shape [9].
As feature, a 16-bin histogram of the signature is generated.

PHOG Pyramid Histograms of Oriented Gradients: PHOGs are calculated
over a level 2 pyramid on the gray-scaled patches [2].

where the combination function fη forms a single kernel from P base kernels
using the parameters η. Different kernels correspond to different notions of simi-
larity and instead of searching which works best, the MKL method does the pick-
ing for us, or may use a combination of kernels. MKL also allows us to combine
different representations possibly coming from different sources or modalities.

3.1 Linear Multiple Kernel Learning

There is significant work on the theory and application of MKL and most of the
proposed algorithms use a linear combination function such as convex sum or
conic sum. Fixed rules use the combination function in (1) as a fixed function
of the kernels, without any training. Once we calculate the combined kernel, we
train a single kernel machine using this kernel. For example, we can obtain a
valid kernel by taking the mean of the combined kernels.

Instead of using a fixed combination function, we can also have a function
parameterized by a set of parameters and then we have a learning procedure to
optimize these parameters as well. The simplest case is to parameterize the sum
rule as a weighted sum:
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kη(xi, xj ; η) =
P∑

m=1

ηmkm(xm
i , xm

j )

with ηm ∈ R. Different versions of this approach differ in the way they put
restrictions on the kernel weights: [1,12,14]. For example, we can use arbitrary
weights (i.e., linear combination), nonnegative kernel weights (i.e., conic combi-
nation), or weights on a simplex (i.e., convex combination).

3.2 Nonlinear Multiple Kernel Learning

A linear combination may be restrictive and nonlinear combinations are also
possible [5,7,13]. [5] developed a nonlinear kernel combination method based
on kernel ridge regression (KRR) and polynomial combination of kernels. The
nonlinear combination can be formulated as

kη(xi, xj) =
∑

q∈Q
ηq1q2...qP k1(x1

i , x
1
j )

q1k2(x2
i , x

2
j)

q2 . . . kP (xP
i , xP

j )qP

where Q = {q : q ∈ Z
P
+,

∑P
m=1 qm ≤ d} and ηq1q2...qP ≥ 0. The number of

parameters to be learned is too large and the combined kernel is simplified in
order to reduce the learning complexity:

kη(xi, xj) =
∑

q∈R
ηq1
1 ηq2

2 . . . ηqP

P k1(x1
i , x

1
j)

q1k2(x2
i , x

2
j)

q2 . . . kP (xP
i , xP

j )qP

where R = {q : q ∈ Z
P
+,

∑P
m=1 qm = d} and η ∈ R

P . For example, when d = 2,
the combined kernel function becomes

kη(xi, xj) =
P∑

m=1

P∑

h=1

ηmηhkm(xm
i , xm

j )kh(xh
i , xh

j ). (2)

The combination weights are optimized by solving the following min-max opti-
mization problem:

mininimize
η∈M

maximize
α∈RN

y�α − 1
2
α�(Kη + λI)α

where M is a positive, bounded, and convex set. Two possible choices for the
set M are the �1-norm and �2-norm bounded sets defined as

M1 = {η : η ∈ R
P
+, ‖η − η0‖1 ≤ Λ} (3)

M2 = {η : η ∈ R
P
+, ‖η − η0‖2 ≤ Λ}

where η0 and Λ are two model parameters. A projection-based gradient-descent
algorithm can be utilized to solve this min-max optimization problem. At each
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iteration, α is obtained by solving a KRR problem with the current kernel matrix
and η is updated with the gradients calculated using α while considering the
bound constraints on η due to M1 or M2.

We formulate a variant of this method by replacing KRR with SVM as the
base learner. In that case, the optimization problem becomes

mininimize
η∈M

Jη = maximize
α∈A

1�α − 1
2
α�((yy�) � Kη)α

where � denotes the element-wise product between matrices and A is defined as

A = {α : α ∈ R
P
+, y�α = 0, α ≤ C}.

Note that the simultaneous optimization of η and α is not possible. Hence, we
use a two-step optimization strategy to optimize them alternatively even though
it is prone to sticking at local optima. We solve this optimization problem again
using a projection-based gradient-descent algorithm. When updating the kernel
parameters at each iteration, the gradients of Jη with respect to η are used.
These gradients can be written as

∂Jη

∂ηm
= −1

2

P∑

h=1

ηhα�((yy�) � Kh � Km)α.

4 Experiments

4.1 Experimental Methodology

1273 nuclei samples were divided into ten folds with stratification. We then
trained single-kernel SVMs with different kernels for each feature representation
and combined the feature representations using four different MKL algorithms
on these folds. In our experiments, we used three different kernel functions: the
linear kernel (LIN), the second-degree polynomial kernel (POL), and the Gaussian
kernel (GAU). Using a rule of thumb, the width parameter of the Gaussian kernel
was chosen as

√
D where D is the dimensionality of the corresponding feature

representation.
We implemented single-kernel SVM and four MKL algorithms in MATLAB

and solved the canonical SVM optimization problems with the LIBSVM soft-
ware [4]. SVM denotes the single-kernel SVMs trained on each feature represen-
tation separately. RBMKL denotes the rule-based MKL algorithm that trains an
SVM with the mean of the combined kernels. SimpleMKL is the iterative algo-
rithm of [14] that uses projected gradient updates and trains single-kernel SVMs
at each iteration. GLMKL denotes the group Lasso-based MKL algorithms pro-
posed by [10,17]. In our implementation, we used �1-norm on the kernel weights
and learned a convex combination of the kernels. NLMKL denotes the nonlinear
MKL variant derived from [5], which uses the quadratic kernel given in (2) and
selects the kernel weights from the set M1 in (3). In our implementation, η0 is
taken as 0 and Λ is assigned to 1 arbitrarily.
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As a summary, we have eight representations (ALL, FG, BG, LBP, COL, FCC, SIG,
and PHOG), three kernels (LIN, POL, and GAU), and five algorithms (SVM, RBMKL,
SimpleMKL, GLMKL, and NLMKL).

4.2 Results

Table 2 reports the single-kernel SVM accuracies for all feature representation
and kernel function pairs. We see that the best performance was obtained as
76.9 per cent using (PHOG, GAU) pair. Independent of the kernel function used,
feature representations BG and PHOG gave consistently higher accuracies than
other representations.

Table 2. Single-kernel SVM accuracies

LIN POL GAU

ALL 70.0±0.2 71.9±2.9 68.7±2.9
FG 70.0±0.2 71.2±3.7 65.9±4.3
BG 70.2±0.6 72.7±3.8 69.6±3.1
LBP 70.0±0.2 63.6±2.7 68.4±6.3
COL 70.2±3.0 62.9±3.5 67.2±3.4
FCC 70.0±0.2 69.8±0.7 62.9±5.5
SIG 70.0±0.2 69.6±3.4 66.0±3.0
PHOG 76.0±3.4 70.5±3.3 76.9±2.7

Next, using four different MKL algorithms, we combined eight kernels cal-
culated on the feature representations with the same kernel function. Table 3
lists the results of best single-kernel SVMs and four MKL algorithms trained.
We can achieve an accuracy of 83.3 per cent by combining eight GAU kernels
with NLMKL. This result is better than all other MKL settings and single-kernel
SVMs. In the last column of Table 3, the results of combining all possible feature
representation and kernel function pairs (i.e., 24 kernels) in a single learner are
shown. NLMKL is still the best MKL algorithm even though the average accuracy
decreases to 83.1 per cent.

To give a feel of complexity, we also measured the time required to run each
method. Table 4 gives the running times in seconds. We can see that NLMKL takes
more time because of the second order dependency to the number of kernels in

Table 3. MKL accuracies

LIN POL GAU LIN+POL+GAU

SVM 76.0±3.4 72.7±3.8 76.9±2.7 NA

RBMKL 77.3±4.0 77.2±2.4 82.7±3.6 81.8±3.8
SimpleMKL 77.1±3.3 77.3±2.3 81.8±3.8 81.6±3.9
GLMKL 77.1±3.5 76.5±3.2 81.8±4.3 81.8±3.8
NLMKL 77.9±3.9 79.2±3.8 83.3±3.6 83.1±3.5
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Table 4. Time required for each method (in seconds). Single kernel time measurements
are summed over all representations.

LIN POL GAU LIN+POL+GAU

SVM 4.45 5.81 3.52 NA

RBMKL 1.56 0.87 1.35 2.57
SimpleMKL 35.55 11.07 11.71 32.81
GLMKL 11.11 4.61 5.20 14.27
NLMKL 45.25 39.21 44.28 323.83

the gradient computations. This difference becomes more apparent when we
increase the number of combined kernels. The running time can be reduced by
caching the element-wise products between the kernel matrices.

4.3 Discussion

In this paper, we formulated a nonlinear MKL algorithm derived from [5] and
we have seen that proposed algorithm performs better than single-kernel SVMs
and three linear MKL algorithms. When we were combining linear kernels on
the feature representations, we observed that linear MKL algorithms achieved to
outperform single-kernel SVMs, whereas the nonlinear MKL algorithm improved
the average accuracy most thanks to the nonlinearity in kernel combination.
Even though the kernels were nonlinear when we were combining polynomial
and Gaussian kernels, the nonlinear MKL algorithm got better accuracies than
single-kernel SVMs and linear MKL algorithms. We have seen that when we use
the nonlinear MKL algorithm, we achieved 6.4 per cent improvement in accuracy
compared to single-kernel SVMs.

5 Conclusion

In this paper, we formulate a nonlinear MKL algorithm variant and use it for
the classification of nuclei in TMA images of RCC. We used SVMs extensively
through different feature sets in our previous work [15]. This study extends our
previous work using several feature sets in a nonlinear MKL setting and compares
the results with single-kernel SVMs and several linear MKL algorithms.

We have seen that the nonlinear MKL algorithm performs better than single-
kernel SVMs and linear MKL algorithms in all of the experiments. The proposed
nonlinear MKL variant learns a better similarity measure than linear MKL algo-
rithms by combining the input kernels nonlinearly. In this work, we used image-
based feature sets for creating multiple feature representations. In a further
application of this scenario, the use of other modalities or other features (e.g.,
SIFT) extracted from these images as well as the incorporation of complemen-
tary information of different modalities to achieve better classification accuracy
is possible.
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