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Abstract Multi-task learning, learning of a set of tasks together, can improve
performance in the individual learning tasks. Gaussian process models have been
applied to learning a set of tasks on different data sets, by constructing joint priors
for functions underlying the tasks. In these previous Gaussian process models, the
setting has been symmetric in the sense that all the tasks have been assumed
to be equally important, whereas in settings such as transfer learning the goal is
asymmetric, to enhance performance in a target task given the other tasks. We
propose a focused Gaussian process model which introduces an “explaining away”
model for each of the additional tasks to model their non-related variation, in
order to focus the transfer to the task-of-interest. This focusing helps reduce the
key problem of negative transfer, which may cause performance to even decrease
if the tasks are not related closely enough. In experiments, our model improves
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performance compared to single-task learning, symmetric multi-task learning using
hierarchical Dirichlet processes, transfer learning based on predictive structure
learning, and symmetric multi-task learning with Gaussian processes.

Keywords Gaussian processes, multi-task learning, transfer learning, negative
transfer

1 Introduction

In classification and regression tasks it is common that there are too few training
data available from the task of interest to learn a good model for the task. Try-
ing to learn a flexible model with many parameters from few data may result in
overlearning where the model mistakes artifacts of the specific available samples
as actual properties of the underlying distribution; alternatively, a simple model
with few parameters might yield less overlearning but may also be unable to repre-
sent the properties of the distribution needed for good classification or regression
performance. Learning the classification or regression model from the data of the
current task alone is called single-task learning.

The problem of having too few data is particularly pressing in data-analysis set-
tings characterized by the “small n, large p” problem of having a large dimension-
ality p and small sample size n. In this paper we will use functional neuroimaging
as one of the case studies, and in functional Magnetic Resonance Imaging (fMRI)
in particular the number of volume elements (voxels) p in which brain activity is
measured is huge. Another well-known example of “small n, large p” conditions
is genome-wide measurements of gene expression or other cellular data, where it
may be of interest to measure a large number of variables p (for instance genes) in
parallel. In these applications the number of samples n (the number of stimuli per
subject in an fMRI study or the number of biological samples in a gene expression
study) is small because of the cost of one measurement, or availability of relevant
subjects or samples. In patient studies of a brain disorder, for instance, there are
practical limitations on how many patients can be accessed and measured, and in
experimental neuroscience the problem is that the larger the number of replications
and variants needed, the less new neuroscience can be done per measurement.

Gaining more data from related tasks. The few training data available from the
task of interest are representative in the sense that they are typically assumed to
come from the same distribution as future test data. Even though there are few
representative data available from the task of interest, there may be more data
available from other potentially related tasks. The distribution of data in these
other tasks is not the same as in the task of interest, but may be similar to it. If
the distributions in several tasks are similar to each other, it may be possible to use
the data from the other tasks to help learn each individual task. It has been shown
that transferring knowledge between several potentially related learning tasks can
improve performance. This scenario, termed multi-task learning (Caruana, 1997) or
transfer learning (Thrun, 1996), has gained considerable attention in the machine
learning community in recent years (see Pan and Yang (2010) for a recent review).

Transfer has usually been studied for regression or classification tasks; multi-
task regression and classification scenarios arise in several application domains. For
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example, if the task of interest is to classify gene expression profiles of patients
as having a particular cancer type, then other data sets of patients having other
cancer types can be related tasks. If the task is to classify scientific articles from a
conference into subject categories, then classifying articles from related conferences
can by used as related tasks. In this paper we study a classification task in which
the goal is to predict the stimulus given brain measurements of a certain user,
utilizing the measurements of other users on the same and different stimuli as
related tasks; in this setting a multi-task learning setup is useful because, when
generalizing across subjects, the brain physiology and function are sufficiently
similar that different brains can be matched, but the matching is only approximate.

Multi-task learning by hierarchical modeling. Learning from several tasks is often
done by constructing a hierarchical model over all tasks, where model parameters
within each task are related to the corresponding parameters in the other tasks
through an upper-level prior distribution. For example, if there are several related
linear regression tasks, they can be learned together by assuming their regression
weights are drawn from a common upper-level prior, which effectively constrains
the weights to be similar across the tasks. Data from all tasks then affect the
learning of the upper-level prior parameters, which in turn affect the learning of the
parameters within each task; this effectively provides additional indirect evidence
for learning the parameters of each task. Parameters in each task may then be
learned closer to their actual underlying values, or in Bayesian learning may be
inferred with less remaining uncertainty. This kind of learning process across tasks
is sometimes called sharing statistical strength (Teh et al, 2005, 2006). Sharing
statistical strength between tasks can potentially compensate for having very few
samples in the desired learning task, and can make the inference more robust to
noise.

Negative transfer. Learning several tasks together may not always be beneficial.
As usual, both single-task learning and multi-task learning can suffer from mis-
specifying the model within the tasks, however, in multi-task settings there is an
additional potential danger: in order to enable learning from data across the tasks,
assumptions must be made about the possible model relationships between tasks.
Transfer of knowledge between different tasks is useful only when the tasks are
related; misspecifying the possible kinds relationships between model parameters
across tasks, or misspecifying relationships to be likely where they are unlikely in
reality, can distort the the model learned for a target task rather than providing
additional statistical strength. The phenomenon where providing other tasks to
help learning actually ends up hurting the learning is called negative transfer (see,
e.g., Rosenstein et al 2005).

Negative transfer can happen in particular if the distributions in some of the
other tasks are in reality not similar to a task of interest: then learning the tasks
together in a hierarchical fashion, and assuming the parameters to be similar, can
harmfully constrain the parameters for the task of interest. The precise effect of
the negative transfer depends on the assumed task relationships and the model
families used within the tasks. The harmful effect will typically be strongest for
inputs where observations from the other tasks strongly outnumber those from the
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task of interest. For such inputs, the model learned for the task of interest may
mistakenly predict outputs to be similar to the other tasks.

A crucial part of multi-task learning algorithms lies in the modelling of task
relatedness, through the specification and the learning of the dependency structure
between tasks. We discuss learning the dependency structure in an asymmetric
setting: we propose a method that aims to avoid negative transfer by a flexible
dependency structure where the dependency can be different from a task of interest
to each other task, and even to different parts of the other tasks.

1.1 Symmetric and Asymmetric Multi-task Learning

In general, existing multi-task learning approaches use a symmetric dependency
structure between tasks. This type of set-up, which we term symmetric multi-task
learning, assumes that all tasks are of equal importance. The set of related tasks is
learned jointly, with the aim of improving over learning the tasks separately (the
no transfer case), averaged over all tasks.

However, a common learning scenario is to learn a specific task (primary task),
while incorporating knowledge learned through other similar tasks (secondary
tasks). An asymmetric scenario is natural especially when future test data will
come only from the task of interest; for example, the term transfer learning is of-
ten used to denote setting where several tasks have been learned at an earlier time
and their knowledge is transferred to help a new task at hand. In one transfer
learning setting, the task of interest may be to classify scientific papers for the
current and next year of a particular conference, whereas the data of the related
other tasks may be documents from earlier years of the conference when the topics
prevalent in the papers were different, and from other conferences where even the
scopes of the conferences are different. When classifying presence of a particular
disease in patients based on gene expression, historical data sets from related other
diseases may be used as related tasks but the aim is to learn to classify the disease
of interest rather than the other diseases which are only used as sources of related
information. In the neuroscience scenario that we use as a case study in this paper,
we are interested in learning about a specific patient’s response to a stimulus, but
we can transfer information from other patients’ responses to related stimuli to
improve learning. The data of the other patients may be historical measurements
from persons who are not currently participating in the neuroscience study. An
asymmetric setting can also happen in multi-task learning when tasks are learned
simultaneously, but one of them is more interesting than others: for example, in a
neuroscience scenario one task may be to detect an interesting stimulus based on
the brain response whereas other tasks may be to detect ordinary stimuli.

The asymmetric learning setting requires the assumption of an asymmetric de-
pendency structure between tasks. Existing approaches include reweighting-based
methods (Wu and Dietterich, 2004; Bickel et al, 2008, 2009) or learning of shared
feature spaces. An alternative has been to, in effect, use a symmetric multi-task
learning method in an asymmetric mode, by using the model learned from auxil-
iary tasks as a prior for the target task (Marx et al, 2005; Raina et al, 2005; Xue
et al, 2007).

Inspired by the Gaussian process (GP) models used earlier for symmetric multi-
task learning, we propose a novel and simple dependency structure for asymmetric
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multi-task learning using GPs. This focuses on learning a target task and learns
to avoid negative transfer; this can be done conveniently in the GP formulation,
by adding task-specific processes which “explain away” irrelevant properties. At
the same time, flexibility of the GP framework is preserved.

2 Dependency Structure in Multi-task Learning with Gaussian
Processes

Supervised learning tasks such as classification and regression can be viewed as
function approximation problems given the task inputs and targets; accordingly,
multi-task learning can be viewed as learning multiple related functions. The Gaus-
sian process (GP) framework provides a principled and flexible approach for con-
structing priors over functions.

In brief, a GP is a prior over input-output functions that does not restrict
outputs to a particular parametric function of input coordinates (such as a sinu-
soid or a polynomial); instead, for any fixed set of input points the prior for the
corresponding set of outputs is represented as a multidimensional Gaussian distri-
bution. The GP prior over the whole input-output function is then specified by a
mean function and a covariance function; often a zero-mean prior is used. Typical
covariance functions such as the squared exponential covariance function specify
that nearby inputs should a priori have strongly related outputs. Given the GP
prior and a set of observed input-output samples, Bayesian inference is used to
infer the posterior over the possible underlying functions. If the observation model
is Gaussian the inference of the posterior can be done analytically. The inferred
posterior can be used for example to predict output values. Even though the mean
and covariance function that specify the GP prior can be fairly simple functions,
the inferred posterior can very flexibly represent complicated functions.

The GP framework has subsequently been applied successfully to multi-task
learning problems (Yu and Tresp, 2005; Bonilla et al, 2008; Alvarez and Lawrence,
2009). A crucial element of these models is the way in which the dependency
structure between the multiple functions is encoded through the construction of
the covariance function. However, current GP approaches do not address the prob-
lem of asymmetric multi-task learning, and only consider symmetric dependency
structures, which we review in the following subsection.

2.1 Symmetric Dependency Structure

Suppose that there are N distinct inputs, X = [x1, ...,XN]T, and M tasks, such
that y! is the target for input i in task ¢t. We denote the vector of outputs for
task t as y' = [y{, ...,yfV]T, and the N x M vector of outputs for all M tasks, as
y=I[yH)",....,(y)"]". Here we consider a set of tasks which all have the same
input, for ease of notation, but the problem setting can easily be generalised to
different inputs for each task. In the GP approach to the problem, it is assumed
that there is a latent function underlying each task, f1, ..., f*. Denoting the latent
function evaluated at input 4 for task ¢ as f*(x;), a (zero mean) GP prior is defined
over the latent functions, with a covariance function of the form

(7160 () = K (2 t)k" (x,%) M
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where (-) denotes expectation and (ft(x)ft/ (x)) is the usual definition of a covari-
ance function, expectation of the product of the two outputs f*(x) and lid (x),
where the expectation is taken over the Gaussian process prior. On the right-hand
side kT is a covariance function over tasks, specifying the intertask similarities,
and k% is a covariance function over inputs. For regression tasks, the observation
model is yf ~ N(f!(xi),07), where o7 is the noise variance in task ¢.

The covariance function k* over inputs can be any typical function used in
Gaussian processes, such as a radial basis function k% (x,x’) o exp(—||x —x'||%/2)
where U denotes a metric, usually a Euclidean or Mahalanobis metric. In the
experiments we use such a radial basis function, detailed in Section 5.

Bonilla et al (2008) define k7 as a “free-form” covariance function, where
kT (i, 5) = Kg:j indexes a positive semidefinite intertask similarity matrix K.
Other methods such as that of Yu et al (2007) have included a parameterised
similarity matrix over task descriptor features, but this could be restrictive in
modelling similarities between tasks. These types of priors essentially assume that
each of the task latent functions is a linear combination of a further set of latent
functions, known as intrinsic correlation models in the geostatistics field (see, e.g.,
Wackernagel 1994). This idea was further generalised by Alvarez and Lawrence
(2009) to generating the task latent functions by convolving a further set of latent
functions with smoothing kernel functions.

2.2 Predictive Mean for Symmetric Multi-task GP

The predictive mean on a new data point x. in task j, for the multi-task GP
formulation of Bonilla et al (2008), is given by

Fxo) =k @k?) "2 'y where S =KT @k"(X,X)+D®I  (2)

where ij is the jth column of task similarity matrix K7, @ is the Kronecker
product, and k¥ = [k(xx,X1), ..., k(X«,xn)] | is the vector of covariances between
the test input x, and the training inputs. The k&% (X, X) is the matrix of covariance
function values between all training input points, and D is an M x M diagonal
matrix where the (t,t)th element is o7.

To gain intuition into the form of the predictive mean, let us define the M x N
vector w = £~ 1y, and divide it into M blocks of N elements: w = [w{ , ..., w ] .
We can then rewrite (2) as

M M
Fxa) =) KD Twm = Y Koyl (3)
m=1 m=1
where pi* = (kf)Twm can be interpreted as the posterior mean of the latent

function at x, for task m; thus (2) is a weighted sum of posterior means for all
tasks, and the weights {KTTnyi}ﬂﬂfle are covariances between task j and all tasks.
Since K7 is positive semidefinite, the sharing of information between tasks is
naturally symmetric, and all tasks are treated equally. However, we are interested
in an asymmetric setup, where we learn a primary task together with several
secondary tasks. Rather than modelling the relationships between secondary tasks,
we want to focus on the aspects relevant to learning the primary task.



8 Gayle Leen, Jaakko Peltonen, and Samuel Kaski

Primary task observations

Primary
XJF task inputs

Shared = Primary
function  task function

Primary
task outputs

Secondary task observations

Secondary Secondary
task function task outputs

Specific
function Coefficient
for the K3 Secondary
Ps  shared Xj‘ task inputs
i function
Secondary tasks sy 0= 1. ,M-1

Fig. 1 Graphical model of the focused GP multi-task model, showing the relationship between
the function values of the primary and secondary tasks. Parameters of the covariance functions
omitted for clarity.

2.3 Asymmetric Dependency Structure

In the previous symmetric learning problem, the tasks were modelled as condi-
tionally independent on a set of M (i.i.d.) underlying functions, which capture
the shared structure between all tasks. In this section, we derive an asymmetric
version of a GP framework for multi-task learning, by constraining the secondary
tasks to be conditionally independent given the primary task, such that the shared
structure between all secondary tasks is due to the primary task function.

Similarly to the previous notation, let us denote the inputs to each task as
X. Suppose that there is one primary task, with targets y?” = [yf,...,yﬁ,]—r,
with underlying latent function values f? = [f?(x1), ..., f?(xn)] . Suppose there
are M — 1 secondary tasks, where the targets for the ith secondary task are
denoted by y® = [yfl,...,y]s\;]T. The corresponding latent function values are
£ = [fSi (X1)7 s 7 (XN)]T'

We are interested in learning the underlying function f? for the primary task.
Here, potentially related secondary tasks can help to learn fP; conversely if we
know fP, this could help to learn the functions underlying the secondary tasks
{f®"}. First we define a joint prior over the primary and secondary task function
values. We start by making the assumption that the secondary task functions { f*¢}
can be decomposed into a “shared” component (which is shared with the primary
task) and a “specific” component. That is, for the nth input,

fs,i (Xn) _ fS“SharEd(Xn) + fsi,speciﬁc(xn) ) (4)

Further we assume that f550@¢d — ,_ P that is, the shared component is corre-

lated with the primary task function. This may seem like a restrictive assumption
but assuming linear relationships between task functions has been proved to be
successful by, e.g., Wackernagel (1994) and Bonilla et al (2008). Now we can place
a shared prior over each f5M@d 314 £P The corresponding graphical model is
presented in Figure 1.
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2.3.1 Sharing between Primary and Secondary Task Functions.

Since the functions in the secondary tasks are composed of a shared and specific
component as shown in (4), we can define the covariance function separately for
both types of components. We first discuss the covariance between the primary
function f? and the shared components f*1@d of the secondary tasks s;.

Let t and ¢’ be indices of two tasks, each of which can be the primary task or
one of the secondary tasks. We place a zero mean Gaussian process prior on f?,
with covariance function kP, such that the prior on the shared function is also a
GP, with covariance function

<ft(x)ft/ (x/)> = kT (t,t)kP(x,x") where kT (t,t) = pipy (5)

where p; is the correlation of task ¢ with the primary task, and p, = 1, and ft
can denote either the primary task function or the shared component in any of
the secondary tasks. Denoting the shared components of the task functions for

n
the M — 1 secondary tasks as £*5hared — | (gs1,sharedyT (fstl’Shared)T} , the

joint distribution over the shared function values is given by

s,shared £r Kpp K,
p(fp,f share ) =GP <|:fs,shared:| ;Oa [KZ;) Ks§:|> (6)

where the expression on the right-hand side is of the form GP(f;0,K) which de-
notes a Gaussian process prior with mean 0 and covariance matrix K evaluated at
function value f. Here in particular K, is the matrix of covariance function values
from (5) between the primary task points, K, evaluated between secondary and
primary, and Kss between secondary task inputs, where the matrices Ks, and
K5 represent variation due to the shared components in the secondary tasks.

2.3.2 Explaining Away Secondary Task-Specific Variation.

We next treat the covariance between the specific components of the secondary
tasks, and then put the types of covariances together to form the total covariance
between the tasks.

. T
We define the covariance function over (£ specificy T

fs,speciﬁc _ [(fsl,speciﬁC)‘l'7 -
to be block diagonal in [Kipec, ey K?&e_cl] with respect to the tasks; we denote the
resulting block diagonal covariance matrix over the secondary tasks as K°P°“. The
covariance functions K3°°C have parameters specific to each secondary task s;,
and the specific functions over all secondary tasks are then drawn as £5SPecific
GP (0, K®P°%). This creates flexible models for the secondary tasks, which can “ex-
plain away” variation that is specific to a secondary task, and unshared with the
primary task. The full secondary task functions are then generated according to
equation (4) as £5 = foshared | ps;specific, ;)6 the shared components are inde-
pendent of the specific components, the covariance of the full functions is just the
sum of covariances of the shared and specific components. The model, which we

call the Focused GP-multitask learning model, takes the form

s P K,, K.
p(fp7f ) = gP (l:fs:| 705 |:Ki‘)z KS§+KSpeC:|> . (7)
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2.4 Sparse approximation to the focused GP-multitask learning model

Learning the hyperparameters for the covariance functions in (7) will be compu-
tationally expensive since it involves the inversion of the full covariance matrix of
the Gaussian process prior across all points in all tasks, which is a matrix of size
(M x N) x (M x N). Inverting such a matrix takes O(M?3N?) time in the general
case; however, if the matrix has a sufficiently simple structure the inversion can
be computed faster. In this section, we derive an approximation to this covariance
matrix based on assumptions about the sharing between secondary and primary
tasks. The idea is to approximate the matrix, preserving the main part of our
intended asymmetric multitask dependency structure, but simplifying it enough
so that we can apply the Woodbury identity to compute the inversion. Note that
this approximation is not crucial to our method: if there are few enough data to
compute the full inverse, the approximation can be omitted.

To start, note that the covariance matrix across all the tasks has a block matrix
form, and a block matrix can be inverted as

AB] ' (A—BD'C)! —~(A-BD'C)"'BD!
cD| ~|-D!c(A-BD'C)'D'C(A-BD'C)'BD !'+D!

where A corresponds to the covariance block within the primary task, D corre-
sponds to the covariance block between the secondary tasks, and B and C are
the cross-covariance blocks from the primary task to the secondary tasks. On the
right-hand side, the only large matrix that needs to be inverted is D which corre-
sponds to the covariance between secondary tasks; we must find an approximation
for this covariance that will be efficient to invert.

To find the approximation, first note that the value of a GP prior over the
primary and secondary functions f? and f® can be evaluated as the product of the
value of a conditional prior and the value of a marginal prior, so that p(f?,f®) =
p(£2|fP)p(f?). In particular, if the GP prior is of the form in (7) then by standard
Gaussian identities we can write it in the equivalent form

p(f7, £%) = p(£*[f)p(7) = GP (£ KopKpp £7, A+ KPY) GP(£7;0,Kpp) (8)
where A = Kgs — KspK;le;rp. The first GP term on the right-hand side is
p(E°E7) = GP (£ KapKyy £7, 4 + KP) (9)

which is the GP predictive likelihood on the secondary task function values, after
training on the primary task. The second GP term on the right-hand side is simply
the marginal prior p(f?) in the primary task. We will now approximate the first
term by a simpler form, by approximating A as a diagonal matrix: we simply set the
diagonal of A to the diagonal of Kss — KspK;le;—p, and set off-diagonal elements
of A to zero. Then the total covariance matrix A + K°P°C in the conditional prior
p(f°]f?) is a simple block-diagonal matrix.

In order to use the approximation in GP learning, we must recover the block-
matrix representation of the full GP prior over f? and f* similar to equation
(7) but with the approximation taken into account. To do this we must sim-
ply recompute the marginal covariance matrix of f°, as the integral p(f°) =
ffp p(£2|£P)p(£P)dfP. This yields

p(E) = GP (0. KK K], + A+ KP) | (10)
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This yields the final prior on all the task functions as

p(E7,£%) = GP (0 [K”p K D . (1)
’ | Kep KopKp, K, + A+ KPP
Since the above prior uses the reduced rank (the rank = number of primary task
inputs) approximation to the covariance matrix, we can use the Woodbury identity
to efficiently calculate the inverse and determinant. In particular, by the Woodbury
identity the inverse of the bottom-right block is

(A+Kspec)71_(A_FKspec)flep[Kpp_FK;'p(A_l_Kspec)flKSp]flK;Fp(A_FKspec)fl

which is efficient to compute since A +K®P° is block-diagonal and the term inside
the brackets is a small matrix of the same size as K,p, having the same number of
rows as there are samples in the primary task. This inverse can then be inserted
in the general block-matrix inverse equation, to yield the inverse of the complete
covariance matrix. A similar efficient computation can be done to compute the
determinant. We call this a “sparse” approximation because several entries of
A were approximated as zero to reduce the rank of the full covariance matrix;
however, note that the reduced-rank full matrix itself in (11) remains non-sparse.

2.4.1 Influence of the primary observations on secondary task predictions

In addition to deriving approximations, the conditional prior (predictive likeli-
hood) equation in (9) is also useful for analyzing the behavior of the asymmetric
learning. An interpretation of equation (9) is that the secondary task functions
are given by the posterior distribution of f? (the primary task function) after ob-
serving the primary task function values f?, evaluated at all the secondary task
inputs, with an added “specific’ component modelled by K*P“. The mean predic-
tion KSPK@D1 fP? is similar to a standard GP predictive equation, with the difference
that according to the definition of Ky in (5) the posterior mean for each secondary
task s is weighted by ps, which models the correlation with the primary task. To
illustrate this, for secondary task I, the posterior mean £5"2"d given £ hecomes

f.l,shared _ plkp(Xl,Xp)kp(Xpaxp)_lfp = pzuf (12)

where we have used the notation: X; is the set of input points for task i, and uf is
the posterior mean given covariance function k¥ and observations f? evaluated at
X;. Controlling ps therefore directly controls the amount of influence the primary
task predictions have on predictions in the secondary tasks, and hence the amount
of influence the secondary task observations have on learning the primary task
function. Learning ps during training can help to avoid negative transfer from
secondary tasks to the primary task.

2.5 Hyperparameter Learning

We can learn the hyperparameters of our model in (11) by optimising the marginal
log likelihood with respect to the hyperparameters of the covariance functions (the
hyperparameters of the covariance function of the shared components and the cor-
responding hyperparameters of the covariance function of the specific components),
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the task similarity vector [ps,, ..., psy ], and the parameters of the observation
model, given the inputs x and targets y. The hyperparameters needed for the
covariance functions depend on the form of the covariance function; in the exper-
iments we use a squared exponential form described in Section 5. For regression,
the observation model is yf ~ N(f*(x;), 07), where o7 is the noise variance in task
t. The log marginal likelihood of the observed data has the same form as usual
in Gaussian process regression: denoting the vector of observed outputs over all
tasks as y and the corresponding matrix of inputs as X, we have

1 1 N N
L =logp(y|X) = —5 log |2 — i(y -0)' ¥ (y-0) - 5 log(2m) (13)

where X' = K 4+ ¥ 5ice, K is the covariance matrix on the right-hand side of (11)
and X, ise 1S a diagonal matrix where the diagonal entries corresponding to task
t are of. If all tasks have the same number of inputs then X, is the same as
D®T in equation (2). The hyperparameters can be learned by optimising the above
marginal log-likelihood with respect to the hyperparameters, which can be done
by gradient methods (here we used standard conjugate gradient optimization).

After the parameters have been learned, the predictive mean for a new data
point x, from the primary task is given by:

fP(xe) = Ered e, X2ty (14)

where kS17°d(x . X) is the vector of covariances between the test input and the
shared functions in the training inputs (primary and all secondary inputs): for
training input x in task ¢, the corresponding element in the vector has value
kP (xx, x)kT (p,t) = kP (%, %x)pt.

The classification case is similar, we simply use a probit noise model p(y! |
I = o(yl(ff + b)), where f} is the predicted function value for point i in task
t, @ is the cumulative distribution function for a standard Gaussian N (0, 1), and
b is a bias parameter. For the binary classification experiments in Section 5.2, we
make an approximation to the model likelihood using Expectation Propagation
(Minka, 2001).

3 Related Work and Discussion

The focused multi-task GP model that we have derived in the previous sections
is designed for asymmetric multitask learning scenarios; we construct a joint GP
prior over the functions underlying the tasks, that assumes an asymmetric depen-
dency structure. Our approach uses a simple idea to bias the model to focus on
learning the underlying function for the primary task, rather than modeling and
learning all the tasks symmetrically. The dependency structure does this by de-
composing the underlying task functions for the secondary tasks as “shared” and
“specific” components. The shared components are from a joint GP prior with the
primary task function. These are conditioned on the primary task function values
according to equation (9) which biases the shared variation between tasks to be
due to the primary task function, and a task specific weight which is learned dur-
ing training. We additionally assume that each of the secondary task functions can



Focused multi-task learning in a Gaussian process framework 13

also be explained by a process specific to it, by defining a block diagonal covari-
ance structure over the secondary tasks. This allows the model to “explain away”
secondary task specific variation and focus the model on learning the primary task.

Recently there has been interest in asymmetrical GP multi-task learning (Chai,
2009), where generalisation errors for the multi-task GP of Bonilla et al (2008) were
derived for an asymmetrical multi-task case, with one primary and one secondary
task. However, this work did not derive a new model for asymmetric multi-task
learning, and focused on analysing the symmetric model. In the next section we
will analyse our asymmetric model in a similar manner.

When deriving the sparse approximation to our model, the sparse GP method
of Snelson and Ghahramani (2006) bears similarities to our model. In Snelson
and Ghahramani (2006), the covariance matrix of the GP was decomposed into a
reduced rank matrix. This model assumes that there are a set of M pseudo-inputs,
which along with their function values (pseudo-targets) act as a pseudo data set.
This provides a compact summary of the real data (N data points; M < N).
The covariance function is parameterised by the pseudo-input locations, which are
learned during the optimization, by deriving the likelihood function for the real
data as a predictive likelihood, given the pseudo data set. In our focused multi-
task GP, we can interpret our sparse approximation as a special case of the sparse
GP model; the pseudo-input locations are fixed as the inputs to the primary task,
such that they are a compact representation of the shared function underlying the
primary and secondary tasks. The distribution over the secondary task functions
can be viewed as the predictive distribution given the primary task function values.
In Section 2.4 we then assume the compact representation suffices to represent the
shared component of variation inside the secondary tasks, so that the remaining
off-diagonal elements in the matrix A were approximated as zero.

In this paper we make the simplifying assumption that the task of interest is
entirely composed of the shared function, and that there are no other strong shared
functions between other tasks. This model already proves useful in a challenging
fMRI task, demonstrating that the idea of asymmetric modelling with explaining-
away yields useful results, and it can be extended to more general asymmetric
modelling in later stages. For instance, there may be detrimental shared variation
between other tasks, which may harm learning of the primary task. In Section
6 we briefly study the effect of such detrimental shared variation on our current
model. The model could be extended by adding additional GP functions which are
shared between other tasks but not with the primary task. The overall model can
then learn which shared function is a better explanation. As the number of tasks
increases, the number of possible sharing configurations increases (shared functions
between 2,3, ..., M tasks) and the complexity of the model quickly increases. This
will be studied in further work.

4 Examining the Generalisation Error for Asymmetric and Symmetric
Models

To examine the effect of the processes that are specific to a secondary task, we
look at the generalisation error on the primary task for the asymmetric two tasks
case in a similar manner to Chai (2009). We investigate the influence of p, the
degree of “relatedness” between the two tasks.
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We want to study a continuum where single-task learning is one extreme,
pooling all data into one task is the other extreme, and the asymmetric model lies
in between them. Note that setting p = 0 in the asymmetric and symmetric cases
reduces to single-task learning. For our model, we will study the case where the
covariance of the specific function in the secondary tasks has its overall scale set
to (1 — p?); then the extreme of p = 1 will reduce to pooling all data into one
task, in both the symmetric and asymmetric cases. This corresponds to using an
overall scale of 1 and multiplying the resulting specific covariance by (1 — p?); we
use this notation to make the influence of p explicit.

Suppose that we have training inputs Xp for the primary task, and Xg for
the secondary task. The covariance matrices Csym and Casym, for the symmetric
and asymmetric cases respectively, of the noisy training data are given by:
Symmetric case

K? K?
Csym(p) = K™ (p) + 071 where  K™™(p) = ( K" pKPPS> (15)
pPBsp Bgg

Asymmetric case
Casym(p) = K™ (p) + 021

K~ pK?
where K®V™"(p) = op BS s 16
)= oKL, K + (1 - 0K (16)

where we have used the notation K% 5 to denote the matrix of covariance values,
due to kP, evaluated between X 4 and X 5. In both the symmetric and asymmetric
case, the top-left terms in the covariances in the equations (15) and (16) are
simply the covariance within the primary task and the cross-terms are due to
the assumed correlation of strength p between the primary and secondary task.
For the asymmetric case, the covariance matrix for the secondary task comes
from the “shared” covariance function kP with the primary task, and a “specific”
covariance function k®. The relationship between the primary and secondary tasks
due to the p’s comes directly from (1) and (5) for the symmetric and asymmetric
cases respectively; additionally, the multiplier (1 — p2) in the bottom-right term of
K?*Y™(p) corresponds to setting the magnitude of the specific covariance functions
to (1 — p2) to achieve a continuum between single-task learning and pooling all
tasks.

4.1 Generalisation Error for a Test Point x.

If the GP prior is correctly specified, then the posterior variance for a new test
point x. for the primary task (due to the noise free f?) is also the generalisation
error for x.. The posterior variance at x. for the primary task is:
Symmetric case: agym(x*,p) = kux — k! Csym(p) 'ka (17)
Asymmetric case: Ugsym(x*,p) = kux — k| Casym(p) "'k (18)

where k..« is the prior variance at X., kP (x«, X4 ), and k| = (kP (xx, X)) pkP(xx,X5)).
We note that the target values y do not affect the posterior variance at the test
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Fig. 2 Behavior of learning in symmetric and asymmetric models. The posterior variances
are shown for the test locations x. € [0, 1] given training points from the primary task (Xp =
[1/3 2/3], plotted as ¢) and secondary task (Xg = [1/5 1/2 4/5], plotted as o) for the
symmetric case (top) and the asymmetric case (bottom). Each plot uses corresponding values
of p? (see legend). The asymmetric learning yields greater reduction of posterior variance at
locations of secondary task observations, meaning the primary task is learned better.

locations, and have omitted the dependence on Xp, Xg and o2 in the notation
for agym(x*, 0), agsym(x*, p) for clarity.

To illustrate the difference between the symmetric and asymmetric cases, we
plot the posterior variances as a function of x, in Figure 2, given two observations
for the primary task, and three observations of the secondary task (see figure for
more details). Following the setup of Chai (2009), we use a squared exponential
covariance function with lengthscale 0.11 for kP, noise variance o2 = 0.05, and, for
the asymmetric setup, a squared exponential covariance function with lengthscale
1 for k°.

Each plot contains 6 curves corresponding to p? = [0,1/8,1/4,1/2,3/4,1],
and the dashed line shows the prior noise variance. The training points from the
primary task (¢) create a depression that reaches the prior noise variance for all the
curves. However, the depression created by the training points for the secondary
task (o) depends on p. For the single task learning case (p = 0), there is no
knowledge transferred from the secondary task. As p increases, the generalisation
error at the secondary task test points decreases. For the intermediate p? values
(i.e., not 0 or 1 (full correlation)), our asymmetric model gives a smaller posterior
variance than the symmetric model at secondary task locations, and therefore
suggests better generalisation error.

4.2 Intuition about the Generalisation Errors

Given the illustrative example in the previous section, we sketch the relationship
between the generalisation errors for the primary and secondary tasks:

Ugsym(x*ap) < ogym(x*,p) (19)

We show this by considering the covariance matrix at the secondary task points,
conditioned on the primary task points. This represents the residual uncertainty



16 Gayle Leen, Jaakko Peltonen, and Samuel Kaski

about the secondary task points, given that we know the primary task points.
Denoting this quantity as A(p):

A(p)sym = Kb g + 01 — p° K% o (Ko p + 0n) ' Kb g (20)
A(p)asym = p°Kho + (1 — p*)KEg + 021 — p° K% L (KD, + 021) KD o (21)

where the multiplier (1 — p?) in the asymmetric case is equivalent to setting the
overall scale of K§g to (1 — p?), which is here done to establish a continuum from
single-task learning at p = 0 and pooling all tasks at p = 1. If A(p)asym = A(p)sym
then:

A(p)asym = A(p)sym

v(p) T A(Pasymv(p) = v(p) T Alp)symv(p)

kew — K (x0, Xp) (K5 p + 00 1) " K (%, Xp) = v(p) " A(p)asymV(p)

< e — K2 (%0, Xp) (KD p + 00 D) ' EP (x4, X p) = v(p) " A(p)symV(p)
Ugsym(x*a p) < Ugym(x*v p)  (22)

where we have used the Banachiewicz inversion formula to evaluate the matrix in-
versions in (17) and (18), and we have defined v(p) = p(k? (X5, %) — K% p (K% p +
o2) T kP (X p, x4))

The asymmetric model has more flexibility than the symmetric model in the
modelling of the secondary task, since it uses both f? and f°, rather than just f*.
We expect that A(p) for the asymmetric version would be smaller than for the
symmetric since the additional flexibility should allow more accurate modelling
of the covariances between the secondary task points, and hence the asymmetric
generalisation error should be smaller than the symmetric.

5 Experiments

In this section, we demonstrate the performance of the focused multi-task GP
model on a synthetic regression problem in 5.1. In 5.2, we compare our model’s
performance with alternative models on an asymmetric multi-task classification
problem on fMRI data. In all experiments, we use squared exponential covari-
ance functions with automatic relevance determination (ARD) prior: k(x,x) =
ofexp(—3 >, (xa—x})?/13), where o7 is the overall scale and [ is the lengthscale
for the dth input dimension, initialized to 1. This prior is used for both primary
and secondary task functions. With this choice, the hyperparameters to be learned
are the lengthscales l; and overall scale 02, with separate parameters for the co-
variance function of the shared components and for each covariance function of
each specific component; additionally the parameters of the observation model
are learned (noise variance o? for cach task in a regression setting), and the task
similarity coefficients p;.

5.1 Synthetic Data

We use synthetic data to demonstrate how our focused multitask model learns
a regression function (the primary task) in conjunction with several related re-
gression problems (the secondary tasks). The model is able to learn the primary
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task even where there is missing data, by using the shared signal learned from
the secondary tasks. We also show how the number of secondary tasks affects the
learning of the primary task: as the number of secondary tasks increases, the mean
squared error of the predictions on the test set decreases. In this section we show
this behavior in a synthetic experiment where the generation of data follows our
model and the ground truth usefulness of the secondary tasks is known; in the
next section we will show that good performance is also achieved for asymmetric
learning in a real-life case study with several secondary tasks.

Synthetic data is generated as follows (see Fig. 3). All the functions have
the same input x, 100 samples evenly spaced on the interval [-5, 5]. The pri-
mary task function is generated from f? ~ GP(0,K,), where the kernel func-
tion is squared exponential with length scale 1 and overall scale 02 = 1. The
secondary task function in each secondary task s,, is generated according to
f5m ~ GP(amf?, fm K ): i.e. the mean is a scaled version (by aun, )of the pri-
mary task function. Each specific kernel function K5°C is squared exponential
with lengthscale 1, and au, is drawn at random from N'(0,1), 8, at random from
[0,1]. We assume a Gaussian observation noise model.

We remove 50 samples from the primary task (see Fig. 4b), and use them as
test data. We train the model with different numbers of secondary tasks, ranging
from 0 (single task learning) to 24. We repeat the procedure 10 times, randomly
drawing the secondary task functions for each run.

Figure 4 (b) shows the mean of the posterior distribution (black) over the pri-
mary task function for one of the runs, for different numbers of secondary tasks.
We also plot the true underlying primary function (blue line), showing that the
model can predict the missing part of the primary task function by transferring
information from secondary tasks. The prediction gets nearer to the true under-
lying primary task function, as the number of relevant secondary tasks increases.
Figure 4 (a) shows that the mean squared error on the test set decreases as the
number of secondary tasks increases.

5.2 fMRI Data

In this section, we evaluate the performance of our model on fMRI data, obtained
from Malinen et al (2007). We consider the task of predicting whether a subject is
reacting to a particular stimulus “touch”, given the fMRI data. We aim to improve
the learning of this primary task by learning it in conjunction with other, related
tasks from the other subjects in the experiment. We also include some less related
tasks in the secondary task set to show how our model can overcome negative
transfer, and focus on the relevant shared signal. The main goal of the experiment
is to show that good performance of asymmetric learning can be achieved not only
for the artificial data of the previous section but also in a real-life case study, and
to moreover show that the asymmetric learning will outperform state of the art
alternative methods.

The fMRI data comes from six healthy young adults who participated in two
identical sessions, in which they received a continuous 8-min sequence comprising
of auditory, visual and tactile stimuli in blocks of 6 x 33s. The stimuli of different
senses never overlapped. Whole-head volumes were acquired with a Signa VH/i
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Fig. 3 Synthetic data experiment: experiment setup. We show the functions underlying the
generated data: the primary task function (top left, red) and 15 examples of (related) secondary
task functions (black). Each function contains a small shared component but also a confounding
component of task-specific variation. The weights of the shared and specific functions for the
secondary tasks are given above each plot.

3.0 T MRI scanner (General Electric, Milwaukee, WI) using a gradient EPI se-
quence (TR = 3 s, TE = 32 ms, FOV = 20 cm, flip = 90°, 64 x 64 x 44 voxels
with resolution 3 x 3 x 3mm?®). In each session, 165 volumes were recorded with
the 4 first time points excluded from further analysis. Preprocessing of the fMRI
data included realignment, normalization with skull stripping, and smoothing. For
additional details on the measurements and applied preprocessing, see Ylipaaval-
niemi et al (2009). After preprocessing, the dimensionality was reduced to 40 by
spatial independent component analysis (ICA) that identified spatial brain activa-
tion patterns related to various aspects of the stimuli. For each adult, the resulting
data is 161 sets of ICA features (40 dimensional), which can be classified accord-
ing to one of 6 stimuli (“touch”, “auditory” (tones, history, instruction), “visual”
(faces, hands, buildings)).

This can be formulated as 6 one-against-all classification tasks in an asymmet-
ric multi-task setup (see Table 1). The classification tasks from subjects 2-4 are
similar to the primary task, and may help the learning, whereas 5 and 6 may not
be relevant. For each subject the fMRI measurements were done in two separate
sessions; in the experiments we use the first session as training data and the second
session as test data.
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Fig. 4 Synthetic data experiment: results of learning with the proposed asymmetric multi-
task Gaussian process model. (a) Mean squared error on the primary task test set, over 10 runs,
for different numbers of secondary tasks, error bars represent +1 s.d. (b) Posterior distribution
over the primary task function for different numbers of secondary tasks (given above each
plot). As the number of secondary tasks grows the learned primary function becomes close to
the true underlying function and the mean squared error decreases.
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Table 1 Asymmetrical multi-task set up for fMRI data study

Subject Classification Task
1 (primary) “touch” against all
2 (secondary) | “touch” against all
3 (secondary) | “touch” against all
4 (secondary) | “touch” against all
)
)

5 (secondary “auditory” (instruction) against all
6 (secondary “visual” (buildings) against all

We compare the focused multi-task learning approach (“focused MT-GP”)
with five reference models. The first baseline model is single task learning using
GP classification (“single task GP”), trained only on the samples of the primary
task. The second (“pooled GP”) learns a GP classification model from the training
examples from all tasks (i.e. treating all data as a single task). For “pooled GP”
we use a sparse approximation when the number of training examples > 300, using
30 pseudo-inputs. We also compare to three state-of-the-art methods, one transfer
learning method and two (symmetric) multi-task learning methods: the predictive
structure learning method of Ando and Zhang (2005, “AZ”), the symmetric multi-
task learning with Dirichlet process priors method (“DP-MT”) from Xue et al
(2007), and the symmetric multi-task GP method (“MT-GP”) from Bonilla et al
(2008); the symmetric multi-task GP method was previously discussed in Sections
2.1 and 2.2. For the “AZ” method, we fix the dimension of the shared predictive
structure heuristically to h = 26, after performing PCA across all the training
samples (primary and secondary) and find the dimension of the subspace that
explains 80% of the variance.

We evaluate the methods using a fixed number of training examples in the
primary task (64 and 161), while varying the number of training examples in each
secondary task (ranging from 4 to 160), over 5 repetitions. We change the amount
of secondary task data to investigate how the models’ performance is affected by
the tasks (2-4) that may help learning on the primary task, and the more unrelated
tasks (5-6). Note that the number of secondary tasks is fixed, only the amount
of data in the secondary tasks changes. Due to the class imbalance in the data,
when randomly picking a subset of secondary training task examples, we ensure
that there is at least one positive and one negative example. For the GP-based
methods, we also fix the bias parameter b = &~ '(r) of the probit noise model,
where r is the ratio of positive samples to negative samples in the training data.

Figure 5 displays the classification error on the test set for the primary task,
over different numbers of training examples for the secondary tasks, for 64 training
examples in the primary task (a) and 161 (i.e., all available training examples for
the primary task) in (b).

Pooling of samples seems to always be a bad choice on this data. We also
find that the symmetric models (MT-GP and DP-MT) perform poorly: both work
only roughly equally to single-task learning for small numbers of secondary task
data and the performance worsens as amount of secondary data increases. Hence
it seems that the secondary data here differs from primary data to the extent of
causing negative transfer. AZ seems to work better but at most on the same level
as single task learning. More work would be needed for model selection, however,
which might improve performance.
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Fig. 5 Classification error on test set for the primary task, against the number of training
examples in each secondary task for different primary task training set sizes (top subfigure:
small, bottom subfigure: larger). Our focused multi-task learning approach “Focused MT-GP”
outperforms the other methods especially when there are few primary task samples and a
reasonable amount of secondary-task samples. When the number of primary-task samples is
larger, single-task learning also performs well.
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Focused MT-GP seems able to leverage on the secondary tasks, clearly out-
perfoming others including single task learning when the amount of data in the
primary task is small. Multitask learning is most relevant when the primary task
has little data; Focused MT-GP performs well in this scenario. When there is more
primary data single task learning improves rapidly, although in Figure 5 Focused
MT-GP still outperforms it. Focused MT-GP seems to need more than a few sam-
ples in the secondary tasks in order to perform well; the explanation is probably
that for this data it is hard to distinguish between useful and negative transfer,
and more data is needed to make the choice. Bad performance of pooling and
symmetric multi-task approaches supports this interpretation. We will investigate
the effect of small sample sizes on negative transfer in future work; the current
result already shows that the asymmetric learning works well and outperforms
other methods given a reasonable number of samples in secondary tasks.

6 Investigating effect of negative transfer in our model

Negative transfer essentially happens when a model mistakes non-related proper-
ties of a secondary task as being related. Although this might happen with small
sample sizes even in a well-specified model, it may become much more prevalent
if the model assumptions are incorrect. Although our asymmetric learning model
involves flexible assumptions about task relationships, it is important to examine
how well the model performs when the assumptions are violated. In this section
we study the effect of violating the model assumptions, and the resulting negative
transfer, in a controlled setting.

Our model is based on the assumption that there is an asymmetrical sharing
structure within the data, with the emphasis on learning the sharing between the
primary and secondary tasks. However, if there is strong shared structure between
the secondary tasks which is not shared with the primary task, this could cause
the model to learn that shared structure rather than the primary task function,
yielding negative transfer to the primary task.

We demonstrate this effect with a toy data experiment. Synthetic data is gen-
erated as follows: The primary task function is generated from f¥ ~ GP(0,K,),
where the kernel function is squared exponential with length scale 0.5. This is di-
vided into training and test inputs. A “shared noise function” f,, which is shared
between secondary tasks only, is generated from a GP with squared exponential
function and lengthscale (1/3). The secondary task functions for the secondary
tasks s, are generated according to f* ~ GP((s—1)am,1fp + 50m 2fa, B K50 ©)
where f, are the values generated for the shared noise function. Each specific ker-
nel function is squared exponential with lengthscale 0.5. The am, 1, am,2, Sm are
drawn uniformly at random from [0, 1]. The s is an indicator function to show
whether the secondary task shares f,. We also add Gaussian noise generated from
N(0,0.01). We generate 10 secondary task functions, and vary the number of sec-
ondary tasks that share fq (the number which have s = 1) from 0 to 10, and use
10 replications. Figure 6(a) shows the mean squared error between the true un-
derlying function and the predictive posterior mean over the test inputs, for each
value of s; the mean squared error remains low up to 6 tasks with the shared noise
function. (b) shows the correlation coefficient p averaged over the secondary tasks,
as the strength of f, increases; the average correlation coefficient decreases when
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ever more tasks use the shared noise function, showing that the model correctly
learns that many of the secondary tasks are not useful for the primary task. Figure
6(c-f) shows the posterior means for the test inputs for each run.

Overall, in this experiment our method appears reasonably tolerant against the
presence of the non-useful shared noise function, maintaining good performance
as the number of tasks featuring that function rises: as shown in Figure 6(a),
performance remains stable even up to 6 tasks featuring the shared noise function.

7 Asymmetric vs. symmetric multi-task learning

In the fMRI case study of Section 5.2 our asymmetric multi-task learning method
outperformed several comparison methods, including the most closely related sym-
metric multi-task learning approach, the method of Bonilla et al (2008) which is
based on Gaussian processes and is here called “Symmetric multi-task GP”. Unlike
our method, Symmetric MT-GP treats all tasks as equally important. The math-
ematical formulation of Symmetric MT-GP has been briefly discussed in Sections
2.1 and 2.2. In this section we show that both our asymmetric model and the sym-
metric model will perform well for certain domains of problems, and both should
be part of the multi-task learning “toolbox”.

We compare the performance of our method and the symmetric MT-GP on
a continuum of multi-task learning problem domains. At the left end of the con-
tinuum, the problems follow the assumptions of our focused multi-task learning
GP (“focused MT-GP”), and at the right end the problems follow the assump-
tions of symmetric MT-GP. For each domain, and each learning problem in the
domain, the performance of the methods is evaluated by mean-square error over
test samples in the primary task.

In detail, we evaluate the performance of the methods at 10 points along the
continuum of domains, and we generate 30 multi-task learning problems from each
domain along the continuum. All the learning problems are regression problems
similar to Section 5.1: each problem contains 10 one-dimensional regression tasks
(data sets), where the first task is the primary task and others are secondary tasks.
Each secondary task has 50 input samples uniformly distributed along the interval
[0,1]. The primary task has fewer samples, and moreover all primary task samples
in the middle interval [0.25,0.75] have been left out of the training data, leaving
15 samples on average in the primary task. This design was chosen to highlight
the multi-task learning ability of the methods: because training samples in the
primary task are not provided for the middle of the input interval in the primary
task, the primary function along the middle interval can only be learned well by
learning across tasks.

In each task, the outputs for the inputs are generated from a weighted sum
of Gaussian process functions, plus observation noise from a Gaussian observa-
tion noise model. The weighting of the GP functions is generated according to
the domain: at the left end of the domain continuum the functions follow the
Focused multi-task GP model, so that the primary task uses a single GP func-
tion f? ~ GP(0,K;), and in each secondary task s,, the GP function f*m =
o fP +.fsm’SpeCiﬁC is a sum of the primary function and and a specific function
fs’"’SpeClﬁC ~ GP(0,K5P), where the multiplier ay, is drawn uniformly from

S’VFL

[0, 1]. All kernels K, and K5°°C are squared exponential kernels with length scale
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Fig. 6 Synthetic data experiment: effect of sharing between secondary tasks on the proposed
asymmetric multi-task Gaussian process model. (a) Mean squared error on the primary task
test set, over 10 runs, for different numbers of shared secondary tasks (with s = 1), error bars
representing +£2 s.d. (b) Mean correlation coefficient p over secondary tasks, over 10 runs, for
different numbers of shared secondary tasks (with s = 1), error bars representing +2 s.d. (c)-(f)
Posterior distribution over the primary task function (black lines) at test points for different
numbers of secondary tasks (0,2, 5,9 respectively) sharing an additional function (fq). True
values of test points are given by red circles, true value of primary task function f, as red line,
fa as blue line. As the number of secondary tasks that have a shared additional function grows,
the average of correlation coeflients learned by our model decreases as expected. Our model
performs well for a reasonable number of such secondary tasks, up to about 6 such tasks; the
prediction error on the primary task remains low.
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0.05. At the right end of the continuum, 10 GP functions are shared across all
tasks, so that f ~ GP(0,Ky) for k = 1,...,10, and each primary or secondary
task uses four of the 10 functions with random weights: f, = Zle Wy, k [ and
fr= 25:1 wg'y fr where a randomly chosen subset of four weights w;, , are drawn
uniformly from [0, 1] and the other six weights are zero, and similarly for weights
wy,'j, in each secondary task. This generative process at the right end of the contin-
uum follows the assumptions of the Symmetric multi-task GP. In the intermediate
domains the weights are generated with both procedures and linearly mixed to-
gether, yielding a smooth transition along the continuum from one kind of learning
problems to the other. We ran both our Focused multi-task GP method and the
Symmetric multi-task GP method for all problems in all domains and computed
the error on test data from the primary task of each problem.!

The results are shown in Figure 7. Our Focused multi-task GP performs as
desired: in domains near the left end of the continuum which are reasonably close
to our assumptions the asymmetric multi-task learning approach outperforms the
symmetric approach, whereas near the right end of the continuum the symmetric
approach performs better. This shows that both symmetric and asymmetric learn-
ing should be part of the “toolbox” for multi-task learning scenarios, and analysts
should consider whether each application is likely to benefit from the asymmetric
or symmetric approach.

8 Model with Several Shared Components

In our asymmetric learning model, only one shared function was used between
tasks; this was already sufficient to yield very good performance in the previ-
ous experiments. We now point out that our model is not limited to one shared
function: it is easy to extend our Focused multi-task Gaussian process model to
incorporate more than one shared function that contribute to the primary task
and which can be shared differently among different secondary tasks.

Note that in the extended model we will present in this section, there is still only
one primary task; the difference is that the model can now handle more complex
sharing between the primary task and the secondary tasks since the component
functions of the primary task can each be shared differently with the secondary
tasks.

We again define the assumed functional relationships between tasks and then
derive the corresponding multi-task GP prior. With L shared functions fP!, [ =
1,..., L, the primary task GP function is a simple sum of the shared functions:
fP= Zle fPl. In each secondary task s;, the GP function is a weighted sum of

the shared functions plus a task-specific function: f* = fs"’SpeCiﬁC—l—Zlel psil fpot,

1 For Symmetric multi-task GP we used its authors’ implementation available at
http://users.cecs.anu.edu.au/~ud882938/code.html, with random initializations of the mul-
titask matrix and fixed initialization for other parameters. For our method, we did not use
the computational speedup approximation of equation (9) since the data sets are fairly small,
and we placed simple flat priors for the hyperparameters of the GPs. Both methods were run
in Matlab and we kept their running times roughly equal (221s per problem for our method,
279s per problem for the symmetric multi-task GP); in that time, we were able to run three
runs per problem of Focused multi-task GP from random initializations, taking the run with
the best internal cost function value, and one run per problem of Symmetric multi-task GP.
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Fig. 7 Comparison of focused (asymmetric) and symmetric Gaussian process based multi-
task learning on a continuum of multi-task problem domains. The comparison methods are our
focused multi-task GP method (“Focused MT-GP”) and a symmetric multi-task GP method
(Bonilla et al, 2008) denoted “Symmetric MT-GP”, and “Baseline” denotes simply predicting
zero. At left in the continuum, learning problems follow the assumptions of our focused multi-
task GP method and at right they follow the assumptions of the symmetric multi-task GP
method (Bonilla et al, 2008). For each method, the line shows the mean squared prediction
error (smaller numbers are better) over 30 learning problems from each domain and over the
test data within each problem; error bars show the standard deviation (over learning problems)
of the mean. The asymmetric and symmetric GP methods both perform well towards different
ends of the continuum as desired.

Note that each secondary task uses each shared function with a different multiplier
p°i'!, allowing different secondary tasks to share different kinds of shared functions,
and the variation not shared with the primary task is again explained away with the
task specific GP function f*Pecifi¢ 2 Rioyre 8 shows the setup. The corresponding
covariance function between outputs y;’ and yjs.,’" in two secondary tasks s; and
Sy is

L
Si o Sil\ Siyl sl si Sl
(w3t ) = (8Csi50) + 3 0™ 0 WP (a3 (23)
=1

where the function § is 1 if the task indices s; and s;; are the same and zero
otherwise; the covariance between a secondary task and the primary task (say s;
is the primary task) is the same except that the multipliers ps“l are replaced by
ones and the function § is replaced by zero; and the covariance within the primary
task is simply L times the covariance function k” over inputs. For simplicity we did
not apply the computational speedup approximation used in (9) here, so equation
(23) is directly used to compute the coveriance function. This covariance function
defines the GP prior over all tasks; Bayesian inference over the functions then
proceeds as before, and the hyperparameters of the GP prior can again be learned
by maximizing marginal log likelihood. Our model with a single shared component
is a special case of this model with L = 1.

2 Note that there is no need to consider more than one specific function for a secondary
task: if several GP functions specific to some secondary task exist, their total contribution to
the secondary task function is a weighted sum equivalent to a single specific GP function.
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Fig. 8 Graphical model of the focused multi-task Gaussian process model with multiple shared
components, showing the relationship between values of the primary task and secondary tasks;
each secondary task can use each of the shared functions with different strengths. The param-
eters of the covariance functions have been omitted for clarity. Compare to Figure 1.

We briefly test this extended model on a multi-task problem with 15 one-
dimensional regression tasks: the 14 secondary tasks have 100 samples each in
[0,1] and the primary task has 52 samples in [0, 1] excluding the middle inter-
val [0.25,0.75]. The primary task function to be learned is a sum of two sinusoid
components sin(7z) and 0.8 cos(30x); the secondary tasks each share the two sinu-
soids with different strenghts and also contain a specific function generated from a
Gaussian process; a small amount of Gaussian observation noise is added to data
of each task. The training data are shown in Figure 9(left). We use the extended
version of our model, here with two shared functions, to learn the primary task
well. The resulting prediction is shown in Figure 9(right) and yields mean squared
error 0.005 over 101 equally-spaced test points, whereas a model learned with only
one shared function would yield a larger mean squared error 0.022.

In our fMRI case study the model with a single shared component already
yielded good results, but as shown here the flexibility provided by multiple shared
components may be useful in future application domains.

9 Conclusion

We derived a multi-task Gaussian process learning method, the “focused multi-
task GP”, designed for asymmetrical multi-task learning scenarios, to facilitate
improved learning on a primary task through the transfer of relevant information
from a set of potentially related secondary tasks. The novel dependency structure
was formulated based on the GP predictive distribution over the secondary tasks
given the primary task, and constraining the secondary tasks to be conditionally
independent. After observing the primary task, the primary task function can be
used to predict a part of each secondary task, depending on the degree of task
relatedness, which is learned during the optimisation. The model also permits
each secondary task to have its own task-specific variation which is unshared with
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Fig. 9 Example of focused multi-task learning with more than one shared component (here
two shared components). Left: a multi-task data set; the primary function is a sum of two
sinusoids, and each secondary task may share the sinusoids with different strenghts. Right:
prediction from the Focused multi-task Gaussian process model (“Focused MT-GP”) learned
with two shared components. The model performs well, yielding mean squared error 0.005.

the primary task, and this flexibility should cause the model to focus on modelling
the primary task function well. We demonstrated the model on synthetic data
and an asymmetrical multi-task learning problem with fMRI data, and showed
improved performance over baseline approaches, and a state of the art transfer
learning and multi-task learning method. We also experimentally demonstrated
the performance of the model with increasing non-useful shared variation. We
demonstrated that the model outperforms the comparable symmetric multi-task
approach over several problem domains, and overall showed that both symmetric
and asymmetric models should be part of the multi-task learning “toolbox”. Lastly
we presented an extension of the model to several components shared with the
primary task, and demonstrated its good performance in an initial experiment.

The key idea in the model is to make simplifying conditional independence
assumptions about the relationships of the secondary tasks, but compensate the
simplicity by adding a flexible “explaining away” model for each secondary task
to reduce negative transfer. This structure is expected to perform well when the
data fulfills the independence assumptions, but additionally due to the “explaining
away” models reasonably well also in the ubiquitous case where the data does not
exactly fit either this model or its alternatives. The performance was demonstrated
empirically in this paper, and also analyzed briefly. More theoretical analysis of
the power of the “explaining away” models is still needed.
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