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Abstract

Background

The aim of connectivity mapping is to match drugs using drug-treatment geamession profiles
from multiple cell lines. This can be viewed as an information retrieval task, tétgoal of finding
the most relevant profiles for a given query drug. We infer the retavéor retrieval by data-drive
probabilistic modeling of the drug responses, resultingriobabilistic connectivity mappingand
further consider the available cell lines as different data sources s@/a special type of probabilistic
model to separate what is shared and specific between the sourcestrastto earlier connectivity
mapping methods that have intentionally aggregated all available data, negieébirmation about
the differences between the cell lines.
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Results

We show that the probabilistic multi-source connectivity mapping method isisuperalternatives
in finding functionally and chemically similar drugs from the Connectivity Mapadzet. We also
demonstrate that an extension of the method is capable of retrieving combénattainigs that matc
different relevant parts of the query drug response profile.
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Conclusions

The probabilistic modeling-based connectivity mapping method providesnaiging alternative tg
earlier methods. Principled integration of data from different cell linessh&pidentify relevant
responses for specific drug repositioning applications.
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Background

Current widespread application of high-throughput transcriptioriljprg has made large collections
of drug-treatment gene expression data both possible and feasibleof @me most important such
databases is the Connectivity Map (CMap) [1] that allows users to matdctiptional profiles elicited
by drug treatments and diseases. The idea is that any perturbation to tmeyeise gene expression
can be summarized by a proper gene signature. Such signatures dataineadusing microarray data
and used as proxies of disease phenotypes and drug effects. Mattrhips and diseases based on
these signatures is known asnnectivity mappingand it has shown promise in drug discovery and
repositioning [2-5]. CMap’s successor, the Library of Integratedidek-based Cellular Signatures
(LINCS, http:/lwww.lincsproject.org/), will offer data for thousands of campds on tens of cell lines
in the near future, providing a unique resource for connectivity mapjhiaged drug discovery.

Connectivity mapping can be seen as an information retrieval problemevleetask is to find the most
relevant gene expression profile for a given query drug profile. Kiy to successful retrieval is a good
definition of the relevance measure. Current connectivity mapping mettedife relevance based on
similarity in the sets of top up- and down-regulated genes between the two neveas profiles [1] or
the consensus profiles constructed by combining all measurement saorpegiven drug [2]. Using
non-parametric rank-based statistics to define the similarity [6], these methdstegrate data from
multiple measurement platforms while reducing batch effects. Alternativetycounld use the Pearson
correlation to compute the similarity, but it is more sensitive to platform diffe¥sit].

Transcriptional drug-treatment databases, such as CMap and LIpG8de measurement data for
various experimental factors, including multiple cell types, doses, and tiiméspdso far, data over
multiple experimental factors has been aggregated into a consensus yibut fpis method intention-
ally ignores possible cell-line-specific effects of the drugs [4]. With thaloer of experimental factors
growing notably in the future, data integration methods capable of distinggiskiitline-specific ef-
fects and various types of consensus or common effects would bechieldng out the full benefits
from connectivity mapping.

In this paper, we propose an alternative, probabilistic model-base@agpfor defining relevance,
with the assumption that a suitably chosen probabilistic model can detectmieddfescts from the noisy
data. If the representation that the model provides is more informative asditesy than the input
data, retrieval is then more precise based on the model instead of basedlransy original data. For
tractability, we assume that the transcriptional effects caused by drugée® consists of a set of
processes that generate partly overlapping patterns in the obseryatimhsodel each process as a
probabilistic latenfactor of data.

Assume then that some of the factors are shared by subsets of the celhhdesome are specific to
individual cell lines. When searching for drugs for a specific typeaoicer, for instance, effects in those
cell lines are then relevant, and it would be natural to define relevaragiagy in those factors.

Relevance stems from the goal of the analyst, and can alternatively bd &ffiécts specific to one cell
line. If there are several relevant cell lines, however, a nice sidefibéollows: The data contains noise
from various sources in addition to the signal, such as measurement fafith,eand the noise is, by
definition, specific to individual cell lines. If relevance is defined in termthe shared activity, it is
more tolerant to noise.

What remains now is to find a method to integrate data sources to identify gettechs. A classical
method is the Canonical Correlation Analysis (CCA, [7]), which seeks titatislependencies between
two data sets with paired samples. CCA has been applied for multiple biologwmaleprs [8-10].
However, for the general connectivity mapping problem, CCA is not@efft as it only searches for



the shared factors and needs to be generalized to multiple data sources.

A recent data integration method, called Group Factor Analysis (GFA),[ik1d generalization of CCA
directly suitable for the task. GFA decomposes the transcriptional resmtaia into factors specific
to individual cell lines and factors shared by two or more cell lines. Theenaomes from the anal-
ysis of groups of variables, here one group for one cell line. Bedide®y a generalization of CCA,
the method generalizes standard factor analysis from finding relationsdipeen scalar variables to
finding relationships between groups of variables, or data sources.

Data integration with GFA is one key novel aspect in our method, as the easheectivity mapping
methods intentionally did not study which responses generalize acrosslthires and which do not.
The consensus-based method [2] assumes that only the genert effdiugs are relevant, effectively
discarding any specific effects as noise. This is optimal only in the caseig$ avith similar effects
across cell lines, but this is not always true and hence the consbased-method is overly restrictive.
GFA scales to an arbitrary number of data sources, and the Bayestaabpistic modeling makes it
possible to cope with the biggest problem of gene expression data, thye plamall n” problem of
having a relatively large number of variables (genes) compared to theamahsamples.

Given the probabilistic model, retrieval of the relevant drug responsfilgs is then performed based
on an activity profile over the factors, or alternatively the latent factpregentation, the model has
learned from data. We call the approgatobabilistic connectivity mappinéfFigure 1). A suitable
relevance measure is the Pearson correlation, as it focuses on tlee(aotivzero) factors of the query
and ignores the inactive ones. Depending on the goal, the analyst@asecto focus on factors shared
by cell lines, specific factors, or both.

Figure 1 Overview to probabilistic connectivity mapping. The input data for probabilistic connec-
tivity mapping are a collection of drug-treatment gene expression prafileasured on multiple cell
lines. Probabilistic modeling, here Group Factor Analysis, is applied to exiplaidata in terms of a
set of factorsZ and their loading$V. The factors can be active in one or more cell lines, capturing
both specific and shared drug response effects. For the probabitistiectivity mapping, a relevance
measure between two drugs is finally defined as a similarity of their factonteeiz;, computed in
practice as the Pearson correlation.

We apply the method to the CMap data and show that it outperforms earlieeativity mapping ap-
proaches in finding functionally and chemically similar drugs. Additionally, tireftll data integration
helps: Shared factors are the most relevant for the retrieval, but qoeeéis factors are relevant as
well. This indicates that while most drugs exhibit similar responses acrbéises, there are also some
important differences that are captured by our model.

Alternatively to GFA, a more straightforward probabilistic factor analysis alao be used by simply
concatenating data from all cell lines and not taking into account the oy@opthe variables according
to cell lines. We will consider this alternative as well; GFA is expected to haweattvantage that
interpretation of the factors should be easier as they explicitly specializastusatof cell lines, but the
retrieval performances are expected to be similar.

In addition to retrieval of single drugs, we demonstrate how the model-lzgg@dach can be extended
to retrieve combinations of drugs. The idea is to retrieve a set of drugsiewdach drug matches a
different part of the relevant query response. This is beneficigddtypharmacology, where drugs have
multiple target effects [12,13]. We demonstrate that combinatorial retriavgpovide complementary
information to single-drug retrieval for polypharmacologic drugs.



Data integration via probabilistic modeling is expected to bring a couple of fubtbieefits. As the
strengths of the responses vary widely, and the data is expected to besketiastic, fixed signature
sizes used in current connectivity mapping approaches may lose impaftantation. The probabilis-
tic modeling approach copes with varying sample norm in a natural fashinalbenefit is the ability
to cope with batch effects that plague microarray experiments. They avespiecific by nature, so
retrieval that focuses on the shared effects can help to furthereddadatch effects, complementing
preprocessing procedures such as mean-centering [14].

Results and discussion
Connectivity mapping results

We evaluated the proposed probabilistic connectivity mapping approaabgdbying it to a collection of
718 compounds and three cell lines from the CMap database, normalizeneathcentering [14]. The
gene expression profiles were modeled across the set of 930 Langeraek identified in the LINCS
project. Three probabilistic models were used: Group Factor Analysi8)(Gparse factor analysis
(sFA), and Bayesian principal component analysis (BPCA). As cosmarwe used two earlier con-
nectivity mapping methods: rank-based average enrichment-scorecgigfeaSD, [2]) and correlation
(COR) on the differential expression data averaged over the cell Mdegvaluated the retrieval perfor-
mance based on two external “ground truths” on relevance: how mahg oétrieved samples have the
same fourth level ATC codes as the query drug and chemical similarity. Weumezhretrieval perfor-
mance with two complementary goodness measures: partial area underGhmuR@ and top-10 mean
average precision (MAP).

Probabilistic connectivity mapping with GFA and sFA clearly outperform therothethods (Figure 2)
on both ground truths and goodness measures. The sFA was slightlyw#ttére partial AUC measure
and GFA for the top-10 MAP measure. Bayesian PCA clearly performedaydindicating that the
sparsity assumptions made in GFA and sFA are important for capturing tirametesponses from the
data.

Figure 2 Probabilistic connectivity mapping outperforms earlier alternatives in retrieving sim-
ilar drugs.  The retrieval performance is indicated with two goodness measures (toppartial
AUC, bottom row: top-10 MAP) and two ground truths (left: ATC codeshtigranimoto similarity of
the 2D fingerprints of the drugs). Probabilistic connectivity mapping (puplor) is performed with
three models: Group Factor Analysis (GFA), sparse factor analy#3,(aRd Bayesian PCA (BPCA).
These are compared to two earlier connectivity mapping methods (oralig® cank-based average
enrichment-score distance (AESD) and the Pearson correlation owdiffdrential expression profiles
(COR).

In the experiments of Figure 2, we used all factors, as that turned oubtluge the best absolute
retrieval performance for this data. We next investigated the possibéditsenf focusing on the factors
shared by the cell lines. The retrieval was based on the most activedsfaators (from GFA), and

compared to the performance with an equal number of the most activesfalstdrare specific to one
cell line. Additionally, we compared this to the most active factors from skguré 3 shows that

the shared factors produce better retrieval almost everywhere.e Tasslts suggest that the explicit
group-wise sparsity assumption in GFA, resulting in the decomposition todshadespecific effects, is

beneficial in modeling data from multiple cell lines.



Figure 3 Factors shared across multiple cell lines are more informatie for retrieval performance
than cell-line-specific factors. Retrieval performance is shown for the top shared (solid line) and
specific (dotted line) factors from GFA (green color) and sFA (browlo, as a function of the number

of top factors. Factors were selected based on the highgatameter values.

Combinatorial retrieval results

We next studied how well the method extends to combinatorial retrieval, thagtigval of multiple
drugs that together are relevant to the query. We queried with drugsghanultiple ATC codes, and
the ground truth (unknown to the model) was the set of ATC codes. Outhggis was that if some of
the ATC codes represent minor response effects, drugs with thoes wadild not get a high relevance
score when retrieving single drugs, as the drugs with the other code(ddl dominate. However, the
minority codes could show up in combinatorial retrieval. We also expect tmdicatorial retrieval to
work better when the multiple effects of the query are more varied, as thetefivould then get less
mixed up. Figure 4 shows an example of combinatorial retrieval results@ngares them to single-
drug retrieval results. Comparisons of the retrieval performanceuanenarized in Figure 5. We see
that combinatorial retrieval improves the results for a good proportionegptitypharmacologic drugs,
and that performance is better with lower ATC levels, that is, more distingiiistects.

Figure 4 Combinatorial retrieval example. Using scopolamine as the query drug, the top-10 re-
trieval results are shown for single-drug and combinatorial retrieval, With codes shared with the
query indicated by colors. For combinatorial retrieval, the drugs ateth(CombRank) based on their
first appearance in the retrieved pairs (either CombDrugl or CombRrigthe example, using both
single-drug and combinatorial retrieval, a match for ATC code NO5 is fairttie first rank. How-
ever, combinatorial retrieval also provides a match for the other ATC 86dealready at the first rank,
whereas single-drug retrieval finds a match only at rank 9. The resmlbdstrates that the combinato-
rial retrieval approach can be beneficial for polypharmacologicigsier

Figure 5 Combinatorial retrieval provides additional information to complement single-drug re-
trieval.  The y-axis indicates the proportion of the query drugs for which comhiiztetrieval
improves the rank for the first hit for at least one ATC code (randorfopeance: 0.5). The results are
shown for four different ATC code levels (x-axis). Red: retrievahf the full set; blue: retrieval after
removing drugs having multiple ATC matches with the query.

As single-drug retrieval is expected to work, even for polypharma@oldgigs, when searching for
drugs with precisely the same combination of effects, we removed drugsghaultiple ATC matches

with the query drug from the retrieved set. After that, performance cosdpiar single-drug retrieval
clearly improved (Figure 5), indicating that combinatorial retrieval was #blnd additional drug

combinations and provide complementary information to single-drug retrieval.

Conclusions

We introducedorobabilistic connectivity mappin@g model-based alternative to earlier drug connectiv-
ity mapping methods. Our first contribution was to define the relevance fantbemation retrieval
task based on a probabilistic model that captures the relevant genssgpreffects for the query drug
in the form of probabilistic latent factors inferred from data. The chasedel integrates data over
available experimental factors, here cell lines, which has not beerndeoed in earlier connectivity
mapping approaches. We showed that probabilistic connectivity mapptpgréorms earlier alterna-
tives in finding functionally and chemically similar drugs, based on transcnigticesponse profiles.



We additionally showed that gene expression response factors st@oess cell lines, identified by a
multi-source probabilistic model, were the most relevant for retrieval. Wecalstirmed the utility of
the Landmark genes identified in the LINCS project.

In addition to single-drug retrieval, we showed how probabilistic connigctivapping naturally al-
lows retrieval of sets of drugs, and showed how such combinatorigdvatiprovides complementary
information to single-drug retrieval for drugs with multiple mechanisms of action.

Connectivity mapping has also been proposed for predicting synergistic @mbinations given a
disease query [3]. A straightforward assumption is that drugs with similae ggpression signatures
could be synergistic, and a successfulivo proof-of-concept of this approach has been reported by
Hassanet al.[15]. An alternative assumption is to search for drug combinations with eitirapletely
independent actions or actions on different but related targets or ggshid6,17], and our proposed
combinatorial retrieval method could provide hypotheses for such cotitrisa

Based on the drug similarity validation with the CMap data, probabilistic conriyatiapping provides
a promising alternative for earlier methods. Next, the method could be appheatthing known drugs
and drug combinations to disease samples, providing hypotheses otmenzgies.

For the current CMap data, the absolute retrieval performance wasasitsvhen all factors were used
for defining the relevance, even though for smaller numbers of factershiéwred ones were more infor-
mative. We expect this to change when the datasets become larger andatewogé@neous, requiring
more expertise from the user to choose a set of informative cell lineseormore advanced tools to
model the users’ interests.

As the LINCS-project will generate data over tens of cell lines, we alpe@other benefits of the Group
Factor Analysis -based probabilistic connectivity mapping to become evem apparent. Being able
to identify both shared responses across a large number of cell tymkenahe other hand responses
specific only to few cell lines, will be highly valuable to drug development disdovery. It would
be even possible to impose more structure on the Group Factor Analysis mddeingmwhich cell
lines response similarly to the drugs, providing potentially highly relevantnimé¢ion for personalized
medicine approaches.

The recent work by Iskaat al. [5] used a biclustering approach to identify important response modules
from the CMap data, and identify shared modules based on overlappieg gs a post-processing step.
They proposed using the modules to match drugs, even though they dicooeed to recommending
particular metrics. They did, however, demonstrate drug repositioningaligating some examples
from both shared and cell-line-specific modules, suggesting that a sujtediebilistic biclustering
method (such as [18]) could be usable for probabilistic connectivity mgasmwell.

Methods
Data

We used the Connectivity Map (CMap) build 2 drug-treatment transcrigtateta [1]. The data was
RMA-normalized [19], and we included measurements only from the HTAHIZ33A microarray plat-

form, for drugs that were measured on all three of the most prominentresdI (MCF7, PC3, HL60).

To follow the state-of-the-art preprocessing procedure by lekat. [14] we included treatments only
from the large CMap batches with around 40 measurements, ignoring thebsredles with at most 6
measurements.



For each drug and cell line pair, we included only the highest concemtrabifferential expression
was computed against the mean of the treatment measurements for eacimbtat,of the biological
controls, as suggested by Islaral. [14]. Remaining replicates of drug and cell line pairs were merged
by averaging. This resulted in drug-treatment gene expression priofiléd8 drugs for the three cell
lines. We additionally re-computed the preprocessing by including treatnrentsafl batches. This
resulted in the addition of only 1.5 % more treatments and no new chemicals, acelthe results for

all methods, and conclusions, were expectedly practically identical to tisorsg only the large batches.

Instead of the full genome, we used the set of Landmark genes provjdéte LINCS project (http:
/llincscloud.org/the-landmark-genes/). This set of about 1000 gersebdem curated based on large
gene expression compendium to be minimally redundant, widely expressaddns/cellular contexts,
and largely representative of the full genome. Using this particular ggrads is thus expected to result
in a higher signal-to-noise ratio in the data, as compared to the full genomseaefrieval performance
using the Landmark genes was indeed better for all methods as comparsitidathe full genome
(results not shown), confirming that using them is a sensible choice forectivity mapping. Of the
968 Landmark genes provided by LINCS, 930 were present in the Qlétap

Rank-based connectivity mapping

Existing connectivity mapping methods use a gene set enrichment-basetefure for matching
drugs [1]. In this paper, we use the method described by ktri. [2]: The genes were first ranked
based on differential expression. For each drug, the ranked génédisn the different cell lines were
then merged by the Kru-Bor rank aggregation method. A consensussggraure was then produced
by taking the top up- and down-regulated genes from the merged list. Térg deug was matched
to other drugs in the database by computing the Kolmogorov-Smirnov statissied barichment score
between the query signature and the ranked lists of the other drugs. Wedtieaverage and maximum
enrichment-score distances (AESD, MESD), AESD giving better retrimormance. Using the full
genome, loricet al.[2] identified 250 genes as an optimal signature size. However, as wsiaggonly
the 930 Landmark genes, we re-validated the signature size, resultingbhegheetrieval performance
with a signature size of 50 genes (results not shown).

Probabilistic connectivity mapping with Group Factor Analysis

Factor analysis (FA) is a standard data analysis tool for capturing atetstanding linear relationships
between variables [20]. It uses a setfoffactors to explain dependencies between the features in a data
matrix X € RV*D:

X=ZWT +E, (1)

where the columns dZ are theK unobserved factordv ¢ RP*X contains their loadings, ar¥d is
Gaussian residual noise. Different factor analysis variants canflseddy choosing specific priors for
the loadingsW and structure for the residual noike

Group Factor Analysis (GFA) was recently introduced [11] for gelieng from modeling of depen-
dencies between scalar variables, which FA does, to modeling depé&slbrtveen data sets. In the
machine learning community, learning from multiple sources of data has bled ralti-viewlearn-
ing, viewsreferring to data sets with shared (or co-occurring) samples. Giveltlextion Xy, ..., X/

of M views, here cell lines, with shared samples and dimensionalities., D,,, the task is to find<
factors that describe the collection and in particular the dependenciesdretie data viewX,,,. For
simplicity, we assume normally distributed data. This choice can of course besthifdhere’s more
prior knowledge. In this paper, the assumption is validated based on @&xtetrieval validation. The



likelihood for observed datX is

M
P(XIW,Z,7) = [[ N(Xm|ZW],7,'T) . )
m=1

Now the noiseE in equation 1 is diagondir; ', ..., 7] with eachr;,! repeatedD,, times. Hence,
every dimension within viewn has the same noise variance, whereas the views may have different
variances. A Gamma prior is used for the inverse variamggs

p(Tla”,b7) Hg Tmla™,b") (3)

The factorsZ are assumed to be normally distributed with zero mean and unit covariance:

p(z) ~ N(0,T) . @

The weight matriXW is made group-sparse by a group-wise automatic relevance determina®@) (A
prior,

M K
plala®,v®) = T T] 9(cmnla®,b%) (5)
m=1k=1 PR
p(W) :p(W‘a) = H H HN(Wm,k(d)‘()?ar_r:k) ) (6)
k=1m=1d=1

wherew,, ;.(d) denotes thelth element in the projection vectev,, .. The inverse variance of each
vector is controlled by the parametey, , with a Gamma prior. The hyperparametefsb™, a“ andb®
are set to very small values, here14.

The ARD makes groups of variables inactive for specific factors hmtglthelra  to zero, providing
factors that are active for only a specific subset of the views. The abflBFA to separate shared and
specific effects is the core of the model, distinguishing it from earlier fantatysis models. The ARD
prior is simultaneously used to control the model complexity, that is, the numiectofs, by shutting
down unused factors during the inference. There are other altexadtiv the ARD prior that could
be explored in the future. Model inference is carried out with a variatiaparoximation, using the R
package CCAGFA available in CRAN [11]. Details of the inference arergin the Appendix.

To evaluate the benefits from the multi-view Group Factor Analysis for giibac connectivity map-
ping, we compare it to two alternative formulations of the factor analysislgmokhat do not use the
multi-view information. For this, we concatenate all data into a single data m#trixirst, we assume
that the noise variance is equal over the variables, reducing the faetysa to the Bayesian principal
component analysis (BPCA) [21]. Second, we assign each featume@mendent ARD-prior, resulting
in a sparse factor analysis model (sFA, [22]).

Given the set of factorZ, identified by the model applied on a collection of drug-treatment measure-
ments from multiple cell lines, the probabilistic connectivity mapping procedurenypleted by com-
puting the relevance measures between pairs of drugs. We define tranoeldetween drugsand; as

the Pearson correlation between the latent variahlasdz;. The correlation-based relevance measure
has the favorable property of focusing on the active (non-zert)faalues, representing relevant activ-



ity for the query. The measure is additionally normalized by definition, remanegffects of varying
norms of the samples. Depending on the task of the analyst, the relevamibe camputed over all or
a subset of the factors, for example only the factors shared by two @& wiews. In this paper, we use
data from all three cell lines in the CMap data, preprocessed as in [Ja]lpwfair comparison with the
alternative methods. However, the model could be learned from onlysesabthe cell lines as well.

Combinatorial retrieval

There are many situations where single-drug connectivity mapping dogsawide fully satisfactory
results. For example, many drugs activate multiple targets and biologicagses, which is called
polypharmacology [12,13]. If we assume that a query dragtivates two distinct biological processes,
single-drug retrieval would tend to provide relevant matches to only the domsinant one of them,
whereas an optimal retrieval result would cover them both. This cantievad with combinatorial
retrieval, where pairs (or more) of drugs are searched for instesid@ie drugs, such that each drug in
the pair matches to one of the active processes of the query. This camhddted as an extension of
the probabilistic connectivity mapping to combinatorial retrieval. The goal is thheearch for the pair
p of drugsi andj that jointly explain the query activity better than any single drug. This is aetiby
combining the factor profiles of the pair of drugs into a single factor prafikuch that it maximizes the
relevance, i.ecor(zy,zq). Formally,z, = {zp1},k € {1,..., K}, 2p 1 € {zik, 2, }. In other words,
each factor value,, ;, is chosen from eithez; or z;, and the choices are made to maximize(z,, z,).

Validation

To validate the probabilistic connectivity mapping approach, we use twonextground truth data
sets of known drug similarity as in [14]: Shared ATC codes and chemical sityil&ccording to the
first set, drugs are considered functionally similar if they share the levgl Anatomic Therapeutic
Chemical (ATC) classification codes [23]. The ATC is a hierarchicaugitog of drugs based on the
organ or systems on which they act, and their therapeutic, pharmacolandathemical properties.
The alternative is to consider two drugs (chemically) similar if the Tanimoto similagityéen their 2D
fingerprints is higher than 0.8. Tanimoto similarities are computed using the rpdklRge [24].

Two different goodness measures are computed for the retrievah givenked list of other drugs for
the query drug, and external ground truth stemming from either Tanimotd ©r Ahe first is partial
area under the ROC curvé'PR < 0.1) over the pooled set of all drug pair similarities, as in [14]. The
second is top-10 mean average precision (MAP), a standard goadeassire in information retrieval.
The two goodness measures focus on different, complementary aspettiewal performance: Partial
AUC focuses on the overall shortest distances, which the user mighttavarplore, emphasizing the
cases where relevant matches for the drugs are easily found. TH® t@B\P, in contrast, is a mean
over all query drugs, giving equal weight also to those drugs forvaimatch is harder to find.

To validate the combinatorial retrieval approach, we constructed a setupsting the ability of the
model to retrieve relevant drugs for a given polypharmacologic query.dn particular, we used the
subset of drugs with multiple ATC code assignments as queries. The resubsranked based on
both single-drug retrieval and combinatorial retrieval, and the top raskigas in which each ATC
code shared with the query first appeared in the lists were found. Wetmeputed the proportion of
guery drugs with at least one ATC code for which the combinatorial retrgives an improved ranking
compared to single retrieval, using ATC code levels from one to four. atienale is that if one ATC
label dominates the effects, itis likely to appear high in the standard (singdé¢ iditrieval, whereas other
minor effects related to other ATC(s) may be further down in the results listnb@wtorial retrieval,
however, also allows minor results to appear in the top ranks. By jointly eimduall the ATC codes
for the query drug, we can see whether combinatorial retrieval findgsdhat match the ATC codes but



do not show up high on standard retrieval.

As there are some drugs that share the same multiple ATC codes, thoselgr® ldefound by single-

drug retrieval more easily. We thus additionally evaluated the setup whehelsugs are removed from
the set of drugs retrieved; this should highlight how many additional dtuggsombinatorial retrieval
can find.
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Appendix

The full posterior distribution of the GFA model is

p(01X) = p(X|Z, W, a, 7)p(Z)p(W|a)p(e|a®, b )p(7[a”, b7) /p(X) - (7)

For the variational inference, the posterior is approximated as

p(01X) ~ q(0) = q(Z)g(W)gq(a)q(T) - 8)
The latent factors are updated as

0(2) = [Ta(m) = [[ N (e, ) ©)



where the parameters are:

The projection matrices are updated as

M Dy,
= [T [TV mly), =) (10)
m=1j=1

Wherew( ) denotes thgth column of matrixW (™),

N -1
=0 = <<7m> > (ziz]) + <am>>

=1
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anda,, is themth row of o transferred into a diagon& x K matrix.

The noise precision(t) = Hm 19(Tmlal,,b],) parameters are updated as

T T

D, N
Q= a + ———
2

3 (W),

Finally, = ¢UV ' +#.1"+11s s updated by optimizing the lower bound numerically. The bound as a
function of U andV is given by

Z Doty — <W(m)W(m)T>k7;€eam k
—Atr(UTU) +tr(V'V)).

The gradients with respect to the cost function are given as

5L oL
— = AV — = Al
50 + AU, Sio ,
5L oL
—=AT \Y% — =AM
v U+ 2V, S :

whereA = D17 —exp(UVT + puyl’ + 1u3)).
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Rank

Query: scopolamine, ATC codes:

a NO5 a SOf1

Single CombDrug1 CombDrug?2 CombRank

1 zuclopenthixol fusidic acid zuclopenthixol fusidic acid

2 - zalcitabine calcium pantothenate zuclopenthixol zuclopenthixol

3- buflomedil succinylsulfathiazole zalcitabine calcium pantothenate

4 -4 cyclopenthiazide fusidic acid zalcitabine succinylsulfathiazole

5 4 succinylsulfathiazole amphotericin B zuclopenthixol zalcitabine

6 - benzocaine netilmicin zalcitabine amphotericin B

7 - nicotinic acid megestrol zuclopenthixol netilmicin

8- nystatin pramocaine zuclopenthixol megestrol

9+ netilmicin clebopride zalcitabine pramocaine
Aifure 4 felbinac flunisolide zuclopenthixol clebopride




0.75 -

o S
(o] ~
[6)] o

1 1

Proportion of query drugs
2
1

0.55

I I I I
Level 4 Level 3 Level 2 Level 1

ATC code

Figure 5 Multi-matches removed == No == Yes



	Start of article
	Figure 1
	FEFF0053006C00690064006500200031
	Figure 2
	Figure 3
	Figure 4
	Figure 5

