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Abstract. We study the task of retrieving relevant experiments given
a query experiment. By experiment, we mean a collection of measure-
ments from a set of ‘covariates’ and the associated ‘outcomes’. While sim-
ilar experiments can be retrieved by comparing available ‘annotations’,
this approach ignores the valuable information available in the measure-
ments themselves. To incorporate this information in the retrieval task,
we suggest employing a retrieval metric that utilizes probabilistic models
learned from the measurements. We argue that such a metric is a sensible
measure of similarity between two experiments since it permits inclusion
of experiment-specific prior knowledge. However, accurate models are
often not analytical, and one must resort to storing posterior samples
which demands considerable resources. Therefore, we study strategies to
select informative posterior samples to reduce the computational load
while maintaining the retrieval performance. We demonstrate the effi-
cacy of our approach on simulated data with simple linear regression as
the models, and real world datasets.
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1 Introduction

An experiment is an organized procedure for validating a hypothesis, and usually
comprises measurements over a set of variables that are either varied (covariates
or independent variables) or studied (outcomes or dependent variables). For
example, in the study of genome-wide association, one explores the association
between ‘traits’ (controlled variable) and common genetic variations (response
variables), or in the study of functional genomics covariates can be the species,
disease state, and cell type, whereas outcome can be microarray measurements.

Traditionally, similar experiments have been retrieved from qualitative assess-
ment of related scientific documents without explicitly handling the experimen-
tal data. Recent technological advances have allowed researchers to both acquire
measurements in an unprecedented scale throughout the globe, and to release
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these measurements for public use after curation, e.g., [1]. However, exploring
similar experiments still relies on comparing the manual annotations which suf-
fer extensively from variations in terminology, and incompleteness in annotations
(see e.g., [2]). The global effort of availing researchers with wealth of data in-
vites the need for sophisticated retrieval systems that look beyond annotations
in comparing related experiments to improve accessibility.

The next step toward this goal is to compare the knowledge acquired from
experimental measurements rather than just annotations. From a Bayesian per-
spective, one can quantify knowledge as the posterior distribution of parameters
given the measurements. The posterior distribution captures both the informa-
tion content of the measurements, in terms of the likelihood function, as well
as the experience and expertise of the experimenter in terms of the prior dis-
tribution over parameters. We study the future scenario where researchers have
submitted (Bayesian generative) models learned on their experiment along with
measurements and annotations. We explicitly assume that we have access to
such database and develop efficient approaches for retrieving relevant experi-
ments. Developing a successful retrieval engine is a first step toward realizing
the future scenario.

We suggest the marginal likelihood (1) as a similarity metric, where the un-
derlying idea is to evaluate the likelihood of the query experiment on Bayesian
models learned from (individual) existing experiments. Here the underlying idea
is that an experiment is relevant to a query if models learned from it are good for
describing the query data. Bayesian models usually need to be stored as a collec-
tion of samples from the posterior distribution since the posterior distribution
itself might not be available in closed form. The suggested metric (1) then can
be efficiently estimated as the average likelihoods over the posterior samples (2).
However, this approach has two issues: storing the posterior samples requires
considerable resource, and evaluating each marginal likelihood can be computa-
tionally demanding (in particular for latent variable models for which the latent
components cannot be integrated out in closed form). This paper deals with se-
lecting informative posterior samples to reduce both storage and computational
requirements while maintaining the retrieval performance.

We achieve this by approximating the marginal likelihood as a weighted av-
erage of individual likelihoods over posterior samples (3). The weights are then
learned to preserve the relative order of experiments in a training set (section
2.1). This is done while imposing a suitable sparsity constraint which allows
us to only consider posterior samples with non-zero weights when computing
the likelihood of a query sample, thus reducing the storage and computational
burden considerably.

2 Method

Assume a set of experiments {£;}2_,. Each experiment is defined as a collection
of measurements over covariates and outcomes, i.e., g = {(Xqi, yg;) }ity. We as-
sume that each experiment £; has been modeled by a model M 4, producing a set



Retrieval of Experiments by Efficient Comparison of Marginal Likelihoods 137

of posterior MCMC samples {04z };-%; from each model. Our general objective is

to rank the experiments £;—actually the models M in the database—according

to their relevance to a new query experiment &, which is not in the database.
We suggest retrieving similar experiments ranked according to the marginal

likelihood they produce for the query, i.e. !,

MLy = p(Eq|€a)- (1)

This metric has been previously discussed in the context of document retrieval
where its use is motivated by capturing the user’s intent in terms of the like-
lihood of a set of keywords &, being generated by a document &; [3]. In the
context of document retrieval the marginal likelihood is usually computed by
jointly modeling the whole document database. However, we cannot evaluate
this metric by modeling multiple experiments jointly, since we explicitly allow
experimenters to submit their models to the database (however, query does
not need to be modeled). Therefore, we utilize individual models, represented
by posterior distributions, p(-|€4) x p(E4]-)ma(:) to evaluate the marginal like-
lihood as MLyq = Epuje,)P(&ql-), where my is the prior information specific
to experiment d. The likelihood can be approximated using posterior samples
{Oar}ty ~ p(-|€a) as

— 1
MLgjq =~ p— > p(Eqlfar). (2)
k=1

However, this approach is computationally demanding: even if one has access to
a closed form likelihood function without latent components, this scales up as
O(3",mangp) where p is the number of parameters for the model (assuming the
models are in the same exponential family). Additionally, if the latent variables
cannot be explicitly integrated out then the samples have to computationally
approximate [ p(x,z|f)dz as well. The technical contribution of this paper is
to address this issue by selecting fewer posterior samples that are essential in
the retrieval task, i.e., discriminative between experiments. We achieve this by
approximating the marginal likelihood as

o 1 mq ndg
MLgja ~ — > war [ [ (%415 ¥ 4:)|0ar) (3)
d =1 i=1
where wg = [wq1, ..., W4m,| 1S a vector of sparse non-negative weights. In this

way, the posterior samples for which the corresponding weights are zero can
be safely ignored. Since we are effectively estimating the weighted mean of a
set of values, ideally speaking, wg should be a stochastic vector: positive values
that sum to one. However, we observe that even without explicitly imposing
this constraint we can achieve favorable performance, and this simplifies the
optimization problem considerably.

! Marginal likelihood is often used to refer to the model evidence. In our case the
model is defined by the data set €4, and the data in computing the likelihood is the
query data £;. We retrieve the data set for which model evidence is the largest.



138 S. Seth, J. Shawe-Taylor, and S. Kaski

2.1 Preserving Ranking of Experiments

To learn the weights for each experiment, we adapt the concept of learning
to rank which is a well explored research problem in information retrieval [4].
However, while this approach is usually applied for learning a function over
document-query pairs, we utilize the concept in learning weights over posterior
samples for all experiments (“documents”) together. Assume, without loss of
generality, that given a query ¢ and two experiments i; and 42 in the database,
i1 ranks higher than iz, i.e., MLg;, > MLg;,. Therefore, while learning the
weights w;, and w;,, we need to ensure that

Z wilkp(5q|6i1k) > Z wizkp(gq‘eizk)
k k

i.e., we learn the weights to preserve the relative ranks of the experiments with re-
spect to the unweighted metric. When each experiment in the training set is used
as a query ¢, preserving the relative ranks of each pair {i1,i2} C {1,...,D}\{q}
translates to needing to satisfy D(D — 1)(D — 2) binary constraints for learning
the weight vectors wy, ..., wy. Fortunately not all of the constraints are usually
required since a user is often interested in retrieving only the top (say, top K) ex-
periments rather than all experiments. Therefore, we reformulate our approach
and, given a query ¢, focus on preserving the order of top K experiments. Given
any experiment g we select the K closest experiments, I;( ={4j,,...,%}, and
compare them pairwise with the rest of the (D —2) experiments in the database.
Intuitively, this preserves the relative orders among the top K experiments I;( ,
and also ensures that these experiments are ranked higher compared to the rest
of the {1,..., D} \ {¢UIX} experiments. This reduces the set of constraints to
KD(D —2) where K < D. Notice that it is certainly feasible to choose different
K for different queries.

2.2 Optimization Problem

Satisfying the binary constraints can be formalized as a classification problem
{(Xy, y1)H-, with a highly sparse design matrix X of dimension L x m, with L =
K D(D —2) realizations and m = ), mq features for learning a combined weight
vector w = [wy, ..., Wq], i.e., to satisfy (X;w + b)y; > 0 for all I. Each row of X
belongs to a triplet (g,41,42), and in that row only the columns associated with
posterior samples from i; and iy are non-zero, and have values {p(&,|0:,1)} -}
and {—p(&E,|0i,x) 2 respectively. The label associated with this entry is 1 if
1\//qu|i1 > mq‘iz, and zero otherwise. An important aspect of this construction is
that the label is not absolute, i.e., we can change the sign of a row in the design
matrix, i.e., assign the values {—p(&,|0:,%)} and {p(&,;|0i,k)} to the row instead,
and switch the label accordingly. Actually, for each row we randomly pick one
of these scenarios to maintain class balance, i.e., we have similar numbers of
zeros and ones. Since we are solving a classification problem, each row of the
design matrix can be normalized without effecting the class label. This helps
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solve scaling issues: Instead of likelihoods p;, we can classify log likelihoods In py,
and compute the normalized entries as + exp(In p; — max; In p;). These values are
n [—1,1]. We use the library liblinear [5] to solve this optimization problem. We
use the logistic cost with [; regularization, and set the regularization value to 1.

3 Related Works

If one models the query experiment as well, then there are other possible ap-
proaches of evaluating similarity between two experiments. Posterior samples
{04} have recently been modeled [6] sequentially with Dirichlet process mixtures
of normal distributions using particle filtering. Once this model (over posterior
samples) has been learned, the similarity between two experiments can be eval-
uated through similarity of the cluster assignments of the respective posterior
samples. Given models of the query and the existing experiments, one can also
evaluate their similarity in terms of probabilistic distances or kernels [7]. How-
ever, both these approaches have the limitation that the models have to belong
to the same family for the similarity to be defined whereas the proposed ap-
proach does not require that. Moreover, the distances or kernels between models
are not tailored to assist in the user’s task, in our case retrieval.

Another possible approach for measuring similarity between experiments is to
model the measurements together in a multi-task learning framework [8]. How-
ever, off-the-shelf methods for modeling multiple experiments together utilize the
same prior and likelihood for all experiments which restricts the generality, and
will not exploit the benefit of the knowledge available at the experimenter’s dis-
posal. That said, the true purpose of multi-task learning is to utilize knowledge
from similar tasks to improve the learning of a new task, which is fundamen-
tally different than retrieval. Also, treating each experiment or model separately
rather than as part of a unified model provides well desired modularity to sepa-
rate the modeling and retrieval task that can be handled by respective experts
which is achieved by the proposed set-up.

A similar problem has been explored before by [9] where the authors aimed at
retrieving a single data vector given a query vector. This was done by modeling
all data together using latent Dirichlet allocation. Retrieving an experiment given
a query experiment, however, is conceptually very different since a single data
point cannot capture the experimental variability that one would be interested in
which is achieved by the proposed approach. That said, retrieval of experiments
as discussed in this article allows one to also query with a single observation to
find the closest experiment which could have generated that particular sample.
This approach has an intriguing characteristic that it enables assigning different
parts of the query experiment to different models.

4 Experiments

We demonstrate the performance of the proposed approach on four real world
datasets: landmine [8], computer [10], restaurant [11], and LINCS (described be-
low). The first two are standard in the multi-task learning genre. For landmine,
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Fig. 1. Comparison of the proposed approach and a simpler metric (evaluating Miqm
by choosing every k-th posterior samples without any optimization) on real datasets.
For landmine we present mean average precision MAP as we have access to labels of
each experiment, while for the other two datasets we present the performance com-
pared to ML, 4 estimated with all posterior samples. Each gray shade corresponds to
a random partition of the dataset in database and queries. The proposed approach
shows improved performance compared to storing every k-th sample for LINCS with
respect to (l-sparsity) x retrieval-performance (contours), and performs equally well
otherwise.

we have access to class labels of each experiment, and we evaluate the perfor-
mance of our approach in terms of mean average precision MAP, while on the
other two datasets we use correlation with respect to the ranking given by ML 4
with all posterior samples. We present the results collectively in Fig. 1. For land-
mine, we train binary probit regression models, while for the other datasets we
use normal regression models with non-sparse gamma priors over the weight pre-
cisions. For each experiment we generate 100 (1000 for LINCS) posterior samples.
For each dataset we randomly split it 3:1 into the database and queries. We ob-
serve whether we can preserve retrieval performance after selecting informative
posterior samples.

Landmine. The data consist of 29 experiments: each experiment is a classification
task for detecting the presence of either landmine (1) or clutter (0) from 9 input
features. Each experiment has been collected from either a highly foliated region
or a desert-like region. Thus they can be split in two classes (16-13). We observe
that this is a relatively simple problem in the sense that the classes are well
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separated, and thus a few posterior samples are sufficient for good retrieval
performance. Due to the same reason, the proposed approach is able to retain
the retrieval performance using only very few posterior samples.

Computer. The data consist of 200 experiments: each experiment is a prediction
task of how a student rates 20 computers in the scale 0-10. Each computer is
described in 13 binary features. Thus, each experiment R'®> — R has about 20
samples (some entries missing). Since there are no obvious ground truth labels,
we measure how well the proposed approach can reduce the number of posterior
samples while preserving rankings. We observe that the problem is relatively
simple since even a few posterior samples have been able to preserve the ranking
with respect to ML, 4. However, the number of samples stored is larger than in
the previous example since there is no clear clustering.

Restaurant. The data consist of 119 experiments: each experiment is a predic-
tion task of how a customer rates 130 restaurants in the scale 1-3. All customers
do not rate all available restaurants, and so the number of observations in each
experiments varies, from 3-18. We select 7 categorical features for each experi-
ment and binarize them, resulting in a R??> — R regression problem. We observe
that this problem is more difficult in the sense that performance drops when the
number of samples is decreased. However, the proposed approach has been able
to collect essential samples to preserve the true rank better.

LINCS. The LINCS (Library of Integrated Network-based Cellular Signatures)
data consist of 65 experiments, each measuring post-treatment gene expression
values in response to a specific drug?. The model for each experiment is a predic-
tion model from the post-treatment gene expression values to drug toxicity: 959
gene expression® values have been measured over 26-44 cell lines for each drug,
thus the equivalent regression problem is R%°? — R. Drug toxicity values were
acquired from CTD? (Cancer Target Discovery and Development). We observe
that we achieve distinctively better performance over random sampling.

5 Discussion

This paper is intended to be a proof of concept towards a potentially highly useful
community effort of extending experiment databanks to include also knowledge
of the experimenters in a rigorously reusable form, as models. As of now, this is
highly non-standard yet would be beneficial since the experimenter alone is best
acquainted with his/her measurements and is able to train the most sensible
model by incorporating his/her experience as prior knowledge. Storing models
of experiments can, however, be cumbersome since most often they are not ex-
pressed in an analytic form. A widely applicable alternative is to store samples of
the posterior; we suggested approaches to select the most informative posterior

2 Personal communication with Dr. Subramanian, Broad Institute.
3 Originally 978.
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samples to store. Notice that posterior samples can be generated also when one
has an analytic posterior. We have presented a set of convincing results on sim-
ulated data with regression as a task, as well as on standard real datasets.
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