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Abstract

Background: Mass spectrometry-based metabolomic analysis depends upon

the identification of spectral peaks by their mass and retention time. Statistical

analysis that follows the identification currently relies on one main peak of each

compound. However, a compound present in the sample typically produces

several spectral peaks due to its isotopic properties and the ionization process of

the mass spectrometer device. In this work, we investigate the extent to which

these additional peaks can be used to increase the statistical strength of

differential analysis.

Results: We present a Bayesian approach for integrating data of multiple

detected peaks that come from one compound. We demonstrate the approach

through a simulated experiment and validate it on ultra performance liquid

chromatography-mass spectrometry (UPLC-MS) experiments for metabolomics

and lipidomics. Peaks that are likely to be associated with one compound can be

clustered by the similarity of their chromatographic shape. Changes of

concentration between sample groups can be inferred more accurately when

multiple peaks are available.

Conclusion: When the sample-size is limited, the proposed multi-peak approach

improves the accuracy at inferring covariate effects. An R implementation and

data are available at http://research.ics.aalto.fi/mi/software/peakANOVA/.

Keywords: ANOVA-type modeling; Bayesian modeling; clustering;

mass spectrometry; metabolomics; lipidomics; nonparametric Bayes

Background

The study of changes in the levels of metabolites and lipids has become essential for

the comprehensive understanding of human health [1]. Chromatography-coupled
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mass spectrometry (MS) techniques have become the standard method for

characterizing the human metabolome [2] and lipidome [3]. The technique generates

a spectrum of peaks describing the sample in the plane defined by the retention time

from the chromatograph and the mass-to-charge ratio from the mass spectrometer.

Each peak in this plane is either generated by an ion arising from one of

the compounds present in the sample, or is an artifact of the measurement without

association to any of the compounds. The association between the peaks and

compounds is unknown a priori. The produced peak data are noisy: First, sample

preparation introduces sources of uncertainty that propagate to the analysis [4].

Second, the accuracy of the device is limited [5] and it produces biases. Third,

peak identification, annotation and pre-processing steps produce additional layers of

uncertainty [6]. The effect of errors at all these levels is exacerbated by the “small n,

large p” problem: experiments cover a very limited number of samples, n, while

the set of compounds measured, p, is potentially large.

However, there also is strong informative structure in the data: First, each

compound may generate multiple adduct peaks [7] (Figure 1) and isotope

peaks [8, 9] (Figure 2), whose positions and shapes provide information about

the identity of the compound. Second, the concentrations of different compounds

generated by or participating in similar biological processes may be highly

correlated [10]. An increasing number of machine learning algorithms are being

developed for inferring such structure either from raw spectral data [11] or from

processed intensity data [12]. The inference of covariate effects—the differences

between sample groups determined by the controlled covariates of the experiment,

such as an intervention—is in the core of the comparative analysis of spectral

profiles [13]. In addition to the controlled covariates, confounding factors may affect

the observations and are subject to the experiment design. In this work, we focus

on inferring effects of the controlled covariates from the data.

The existence of additional peaks in the spectrum is usually seen as a problem

and only the main peak of each identified compound is used for further analysis.

All peaks are a result of the ionisation process where a charged particle is attached

to or detached from a compound. Each such compound-ion pair produces a distinct

adduct peak. Random variation in the ionisation process leads to inconsistencies

between batches of samples, perceived as variation in the ratio of intensities of
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the peaks associated with one compound. This is a major source of error for

all existing analysis approaches regardless of the choice of the peak used for

the analysis. On the other hand, the distribution of the intensities of isotope

peaks is by nature well preserved across both samples and compounds. Moreover,

the natural isotopic distribution of a compound is known and can be used to

make peak annotation more precise. In this way, isotope peaks provide reliable

additional information about the differences in compound concentrations between

sample groups.

We propose a probabilistic approach for extending statistical analysis to all

available peaks and demonstrate that the additional peaks can provide a real

benefit to the inference of covariate effects (Figure 3). The approach is used

to cluster the peaks that are likely to arise from a single compound together

and to infer the changes in concentrations of the compounds more accurately

based on all these peaks. By this approach, we are addressing the problem of

inadequate sample-size by introducing additional data describing the compounds

behind the noisy measurements.

To solve the problem we introduce the following assumptions about the generative

process of the data within a Bayesian model: First, samples carry between-group

differences in their compound concentrations and the differences arise from

responses to controlled covariates. Second, multiple observed spectral peaks follow

an identical generative process and their heights are a noisy reflection of the true

concentration level of the compound. Third, shapes of the peaks from one

compound are generated through an identical process following the properties of

the measurement device, and thus these shapes are highly similar.

The approach presented in this paper consists of two stages of computational

inference: (1) peaks that share a compound as their generative source are clustered

together, and (2) the responses to controlled covariates of the experiment are

inferred on these clusters of peaks.

The clustering part of the approach is based on a nonparametric Bayesian Dirichlet

process model [14]. To improve the performance of this model, we have redefined

the prior distributions from a normal distribution to a beta distribution to improve

the match to the peak shape similarity observations.
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The model for inferring the responses to covariates operates on clusters inferred

in the first part. A Bayesian multi-way model [13] is suitable for this task. This

model itself could be used for clustering summarized mass spectral intensity data,

but in this work, we demonstrate that the clustering can be done more accurately

based upon the similarity of chromatographic peak shapes.

Material & Methods

This section describing the models consists of two parts: clustering of spectral peaks

and inference of covariate effects. To maintain the mathematical rigor in the section,

we use the terms “samples,” “variables” and “clusters” to refer to the experimental

runs of the mass spectrometer, the peaks in the mass spectrometry data, and the yet

unknown compounds in the experimental runs, respectively. In the equations, we

denote them by the indices

i =1, . . . , N (samples, i.e., experimental runs),

j =1, . . . , P (variables, i.e., peaks),

k =1, . . . ,K (clusters, i.e., compounds),

(1)

respectively, where N , P and K are their respective total numbers. We use bold

capital, bold non-capital and non-bold non-capital symbols to refer to matrices,

vectors and scalars, respectively (e.g., V, v and v).

Clusters of peaks based on the similarity

Following earlier work [14], we measure the similarity between the shapes of two

peaks by their Pearson correlation computed over a window of retention time after

a standard peak alignment [15] across the samples. Truncating negative values to

zero, this leads to a distinct similarity matrix Qi·· ∈ [0, 1]P×P for each sample i.

In the notation, the operator “·” indicates that the entire dimension of the array

is included, not only the single item j. Since a peak is not necessarily observed

in every sample, there may be missing values in the matrices. Therefore, we

construct an additional mask R ∈ {0, 1}N×P×P with binary values rijj′ indicating

whether the peak pair (j, j′) in sample i appears together within the window

where the similarity is measured and whether both of the peaks are observed.

mtR2.8: Peak missing or below the limit of detection?An unidentified peak may
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still be present in the sample below the limit of detection of the mass spectrometer.

However, then it is not useful for the inference of covariate effects and, thus, is

treated as missing.

Model

We assume that the peaks are generated through a Dirichlet process [16]: there

is an unknown number of clusters and an unknown and variable number of peaks

that arise from each of the clusters. Peaks are assumed to have a one-out-of-many

association: each peak is associated with only one of the unknown clusters. With

these basic assumptions, we can infer the P -by-K clustering matrix V from

the data Q. Value vjk = 1 in the clustering matrix V assigns the peak j to

the cluster k. To make the following equations more compact, we use an additional

variable, εjj′ = vj·v
T
j′· ∈ {0, 1}, which is an inner product of the cluster indicator

vectors of the peaks j and j′, to denote whether the two peaks come from the same

or different clusters (1 or 0, respectively).

We set a spike-and-slab prior [17] for the peak shape similarity to model

the inherent sparse structure of the data. The similarity between any pair of

observed peaks (j, j′) is assumed to follow a beta distribution, but the shape

of the distribution is assumed to depend on whether the pair comes from

the same cluster or from different clusters (shape parameters (ain, bin) or (aout, bout),

when εjj′ = 1 or 0, respectively). Also the probability of a missing similarity

value is assumed to depend on the cluster assignment of the pair (pin0 or pout0 ,

when εjj′ = 1 or 0, respectively). The distributional assumptions are

qijj′ |εjj′ ∼

 rijj′
(
1− pin0

)
Beta (qijj′ |ain, bin) + pin0 δ (rijj′) , εjj′ = 1,

rijj′ (1− pout0 ) Beta (qijj′ |aout, bout) + pout0 δ (rijj′) , εjj′ = 0,
(2)

with the first and the second row of the equation stating the distributions of a peak

pair from the same cluster and different clusters, respectively. The likelihood of

the entire peak shape data,

L (Q,R|V) =

N∏
i=1

P−1∏
j=1

P∏
j′=j+1

p (qijj′ , rijj′ |εjj′) , (3)

becomes a product over all peak pairs and samples following the distributional

assumption of Equation 2.
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We further assume that the observed peaks are generated from an unknown finite

subset of an infinite set of clusters with an equal prior probability,

p (εjj′ = 1) =
1

P − 1 + αDP
, (4)

for any pair of peaks to be generated from the same cluster. These assumptions

define the Dirichlet process, controlled by the concentration parameter αDP, which

determines the prior probability mass outside the existing clusters. Following from

this prior assumption, the probability of assigning peak j to an existing cluster k,

p (vjk = 1|Q,R,V−j,·) ∝ skL (Q,R|V−j,·, vjk = 1) , (5)

becomes weighted by the current size of the cluster, sk = vT
−j,kv−j,k. In the notation,

matrices V·,−k and V−j,· correspond to the matrix V with the column k and

the row j omitted, respectively. Alternatively, with probability

p (vj,K+1 = 1|Q,R,V) ∝ αDPL (Q,R|V−j,·, vj,K+1 = 1) , (6)

the process may create a new cluster with the index K + 1 and only the peak j

inside. Then, the likelihood term is weighted by the Dirichlet process concentration

parameter αDP, which can be seen as a pseudo-count for the number of peaks outside

the current K clusters.

Inference

We infer the posterior distribution of the clustering via Gibbs sampling, which

results in a set of S samples of the clustering V(s), s = 1, . . . , S, from the true

posterior distribution p (V|Q,R). The computational complexity of a Gibbs

iteration is O
(
KP 2

)
. Further analysis can operate on the entire posterior

distribution of the clustering through integration, or on a point estimate of

the distribution. We follow earlier work [18] and acquire a point estimate of

the posterior distribution of the clustering through finding the least-squares

clustering (Section 1 in Additional file 1).

Covariate effects based on peak heights

Having inferred the grouping of similar peaks into clusters that each correspond to

a compound, we infer the differences in concentrations between sample groups for
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each cluster given the peak height data X ∈ RP×N and the clustering V. Again,

some values in the data may be missing.

Model

After a peak-specific centering based on the control group, the observed peak heights

for each sample i are assumed to be normally distributed with a cluster-specific

mean xlat
·i :

x·i|V,xlat,σ2 ∼ N
(
Vxlat
·i ,Λ

)
, (7)

where the diagonal matrix Λ contains the peak-specific variance

parameters σ2 ∈ RP
+. The cluster-specific means are assumed to be normally

distributed with a sample group-specific prior α,

xlat
·i |α, ai ∼ N (α·ai , I) , (8)

where ai ∈ {1, . . . , La} is an indicator of group membership (covariate level) for

sample i and I is a K-by-K identity matrix. The corresponding covariate effects are

arranged into an K-by-La matrix α and the effects are assumed to be independent

and normally distributed,

α·l ∼

 δ (α·l) , l = 1

N (0, I) , l = 2, . . . , La,
(9)

except for the first level, l = 1, which is defined as the baseline level and thus is fixed

to zero. The model is not limited to one covariate: the cluster-specific mean xlat
i·

can be expressed as a sum of effects of multiple covariates and their interaction

effects (Section 1 in Additional file 1). Further, the model is readily extensible for

dependent covariate effects [19].

The peak-specific variance parameter,

σ2
j ∼ Scale-Inv-χ2

(
n0, σ

2
0

)
, (10)

follows a scaled inverse-χ2 distribution with n0 prior samples and a scale σ2
0 .
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Inference and analysis

We infer the covariate effects via Gibbs sampling. Now the clustering matrix V

has been learned earlier, and is thus taken as known in the model. Computational

complexity of a Gibbs iteration is O
(
NPK2

)
. The clustering and the covariate

effects can be inferred overnight on a standard desktop computer for a typical-sized

data set. The posterior distributions of the covariate effects α are descriptive of

the differences between the sample groups and, thus, interesting from the analysis

point of view. To assess the significance of the difference between a sample

group, c = l > 1, and the control group, c = 1, for a cluster k, we can study

the posterior probability of the effect αkl being greater or less than zero.

Comparison methods

We call the method described above Model 1. We compared the performance of

the following approaches and refer to them as Models 1, 2 and 3:

1 the multi-peak approach using both peak shape and height information,

as proposed in this work (nonparametric clustering of peaks by their shape

similarity, inference of covariate effects on the clusters based on the height of

the peaks),

2 the multi-peak approach using peak height information only [13] (clustering

of peaks and inference of covariate effects based on the height of the peaks

only),

3 the typical single-peak approach (inference of covariate effects by the height

of the strongest annotated peak only).

For the studied real data sets, we discovered that peak height information alone

is not enough for clustering the peaks into individual compounds due to the high

level of noise and strong correlations between compounds. Thus, for real data we

compared Model 1 to Model 3 and highlight the benefit gained by using peak shape

information.

Model 2 assumes the generative Gaussian latent variable model of

the Equations 7–10 for the intensity observations X and a uniform multinomial

prior for the clustering of the peaks. The clustering is inferred by Gibbs sampling

together with the covariate effects.
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Model 3 quantifies the difference between the covariate level, c = l, and the control

level, c = 1, as the difference of their means based on the main peak j,

αj,l =
1∑N

i=1 δai,l

N∑
i=1

δai,lxj,i −
1∑N

i=1 δai,1

N∑
i=1

δai,1xj,i. (11)

The Kronecker delta function δai,l selects the samples that have the covariate

level l by receiving the value 1, when ai = l, and 0, otherwise. When the data

are log-transformed, the mean difference corresponds to the fold change computed

in many analysis platforms such as MZmine [15] and XCMS [6].

Experiments

We demonstrate the performance of the proposed method through three

experiments: a simulated data experiment, a spike-in benchmark experiment

with known changes in concentrations, and a gene silencing experiment with

measurements of the lipidome of cancer cells.

Evaluation measures

Evaluation of the performance on real data sets is not a trivial task, as there is no

ground truth available: neither the identity of the peaks nor the true effect sizes

are known. Thus, we also used spike-in data, where the true covariate effects are

known, although only a small number of the peaks are annotated.

For the simulated and benchmark experiments, we computed the mean squared

error (MSE) between inferred and true covariate effects as an evaluation metric.

As a result of the log-transformation of the intensity data, we were quantifying

relative changes between sample groups, independent of the average height of each

peak. In the model, we thus assumed that the change is preserved across the peaks

of one compound, in relative terms. The significance of the difference in the MSE

of the proposed approach and the comparison method was tested by the paired

one-sided t-test. The false discovery rate was controlled by the Benjamini-Hochberg

step-up procedure [20]. Additionally for the simulated experiment, we studied

the inference of the statistical significance of effects, since the true distribution

of the data was known.

To assess the sensitivity of the approaches to noise in natural lipidomic data

lacking a ground truth, we used two types of indirect evaluation: First, we studied
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the consistency of the inferred covariate effects given a prior assumption about their

similarity. Second, we examined the robustness of the inferred covariate effects to

noise. Finally, we demonstrated differences between the multi-peak and single-peak

approaches through examples of qualitative analysis of annotated peak clusters.

Simulated data

We started by investigating the performance of the proposed approach on synthetic

data, where the true covariate effects are known. We focused on a usual task in

exploratory analysis of biological data: the detection of significant non-zero covariate

effects. We measured the performance by the accuracy at this task—the ratio

of true positive and true negative significant differences among all effects. We

used the 95 % posterior quantiles to determine the significance. Additionally,

we compared the approaches by the MSE to the true effects and studied

the performance of the two clustering models by computing the normalized

information distance (NID) [21] to the true clustering.

The approaches were tested across a set of potential experimental settings to

study how the observation of additional peaks and samples affects the performance.

Simulated data were generated by assuming the latent structure of Model 1.

The following data parameters were varied on a grid: sample-size N = 2× {3, 7, 15}

and peak-specific noise σ2 = {1, 5}. Additionally, the number of peaks per cluster

was varied between 3, 7 and 15. Covariate effects α·2 = [2,−1, 0.5, 0, 0, 0, 0]

were generated for each data set. The experiment was repeated 100 times with

independent data sets. The results are reported in the Results section.

Benchmark data with known changes in concentrations

The benchmark data set of apple samples [22] includes a set of annotated spike-in

compounds with increases of 20, 40 or 100 % in concentrations. We started with

the raw spectral data [23] in order to acquire the shapes of the peaks in addition to

their heights. The mass spectra were pre-processed using MZmine 2 [15] (Section 4

in Additional file 1). We used standard pre-processing methodology also used in

the original publications of the data sets, thus maintaining the focus of the work

on the potential benefit gained from the multiple peaks. The compared approaches

were on the same line in terms of the data.
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We evaluated the approaches by the MSE between inferred and true covariate

effects. If the cluster contained multiple annotated peaks, the effect of each

annotated peak was evaluated separately for the single-peak approach. Clusters

with no annotated peaks were considered to have a 0 % true effect and the effect of

the single-peak approach was inferred based on the strongest peak of the cluster.

Lipidomic data from a gene silencing study

The data come from a recent experiment [24] to study the effects of gene silencing

treatments on lipidomic profiles and growth of breast cancer tissue. Driven by

the lack of ground truth about the covariate effects, we evaluated the inferred

effects indirectly in two ways: (1) by quantifying the consistency of the effects

within a lipid family and (2) by quantifying the robustness of the magnitudes of

the inferred effects across the lipidome in presence of additional noise. Additionally,

we investigated the stability of the inferred clustering on the data and qualitatively

analyzed differences between the covariate effects of single peaks and the effects

inferred on clusters of peaks by Model 1.

The data included 32 lipidomic profiles of breast cancer cells from the ZR-75-1 cell

line. We inferred the effects of seven distinct silencing interventions on metabolism-

regulating genes (Section 5 in Additional file 1) at two time points. The raw spectra

were pre-processed with MZmine 2 as described in the original publication [24],

in addition to which the shape similarities of the peaks were computed.

Consistency of effect signs. In the first task, we quantified the consistency as

the accuracy at predicting the covariate effect of a test lipid given the model on

the covariate effects of other lipids of the same family. For instance, we predicted

the effect of a gene silencing treatment on the sphingomyelin SM(d18:1/22:0)

based on the sphingomyelin compounds in the training set. We examined the sign

of the effect instead of the absolute effect, since even within a family of lipids

the changes have a high variance and thus cannot be reliably predicted without

imposing additional information about the biological system.

We predicted the signs of the covariate effects for test lipids in a three-fold

cross-validation setting with 100 randomizations. The examined lipids included

the annotated members from the three most abundant families of lipids that had



Suvitaival et al. Page 12 of 23

two or more peaks identified with the clustering model (Section 5 in Additional

file 1).

Further, we studied the influence of noise to the consistency by adding independent

normally distributed noise (from σ = 0 to σ = 10) on the peak intensity observations.

Added noise variance σ = 1 was equal to the existing original variance in the data,

and the upper bound for the signal-to-noise ratio then was 0.5 (Table 4 in Additional

file 1).

Robustness of effect magnitudes. To evaluate the inferred effects at the scale of

the entire observed lipidome, we examined the consistency of inferred covariate

effects between the original and noise-added data sets. This experiment simulated

the situation where the true effects are known (effects from the original data set),

but the data based on which the effects are inferred are noisy (the added-noise data

set). To measure the consistency, we computed the Spearman correlation between

the covariate effects inferred from the original and the added-noise data sets. We

studied all clusters with two or more peaks, constituting 20 % of the clusters.

Results

Simulated data

On a normal level of noise (σ2 = 1), the multi-peak approaches (Models 1

and 2) always performed better at detecting significant covariate effects than

the single-peak approach (Model 3; Figure 4a) and only with enough samples

the performance of Model 2 became comparable to Model 1. The inferred clustering

of Model 1 was perfect while the clustering performance of Model 2 heavily depended

on the number of samples available (Figure 4c).

On a high level of noise (σ2 = 5), only Model 1 worked (Figure 4b). The reason for

the failure of Model 2 was the imperfectly inferred clustering (Figure 4d). The good

performance of Model 1 resulted from the clustering step, which is robust to noise

in the peak heights. The peak shape similarity gave strong evidence for inferring

the clusters already from a single sample.

The MSE between the inferred and true covariate effects for Model 1 was smaller

compared to Model 3 in all the 24 setups of the experimental grid (Table 1 in

Additional file 1). The difference was statistically significant in 22 setups and in all

setups at the high level of noise.
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The performance of Model 1 clearly improved, when more peaks from a cluster

were present in the data (Figure 5). This was pronounced at a high level of noise,

when the observation of a single peak is unreliable for inferring the covariate effects.

In a similar way as in averaging over samples, the model is able to overcome

peak-specific noise also by averaging over multiple peaks.

Benchmark data with known changes in concentrations

In the first demonstration on real UPLC-MS data [22], we show that Model 1

can infer the artificial perturbations in a spike-in experiment more accurately than

the single-peak approach.

In the positive ion mode, the model inferred 794 clusters, among which

135 clusters included more than one peak. Seven clusters included annotated peaks

from the spike-in compounds, four of which included more than one annotated

peak (Table 2 in Additional file 1). Peaks from two compounds were distributed to

two and four clusters, respectively. In the negative ion mode, the model inferred

367 clusters, among which 113 clusters were non-singletons. Three clusters included

annotated peaks from the spike-in compounds, all of these clusters included more

than one annotated peak and all peaks from one compound were clustered together.

In both the ion modes, all clusters with annotated peaks were specific to one

compound.

Model 1 had a lower error than Model 3 at all magnitudes of the true effect with

the strongest relative improvement occurring at the small magnitudes (Figure 6).

The difference was statistically significant for covariate effects from 0 to 40 % (Table 3

in Additional file 1).

Lipidomic data from a gene silencing study

In the second demonstration on real UPLC-MS data [24], we show that Model 1

can infer more consistent covariate effects in two ways even though the true effects

are unknown.

Consistency and robustness of effects

When examining the consistency of effects within a lipid family, Model 1 was more

consistent than Model 3 at all levels of noise (Figure 7). When no noise was added

and also at moderate levels of noise, both approaches performed clearly better than
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expected by random chance. When noise was added, Model 3 suffered more and its

performance reduced to the random level more rapidly. Given the assumption about

the general similarity of lipids within a family is true, Model 1 inferred the covariate

effects more consistently.

When examining the robustness of effect magnitudes, Model 1 was more consistent

than Model 3 when noise was added to the data (Figure 8). The confidence intervals

from the 100 randomizations did not overlap at all at moderate levels of noise.

Stability

Since the proposed approach is sensitive to the inferred clustering of the data,

we analyzed the stability of the inferred clustering on biological data, using

the lipidomic gene silencing data as a case study. We tested the influence

of the concentration parameter αDP in the Dirichlet process clustering model.

The clustering result for the lipidomic gene silencing data was robust to changes

in the magnitude of the concentration parameter (Figure 2 in Additional file 1).

As expected, the number of clusters increased, when the preset value of

the concentration parameter increased, but the relative change was small.

Qualitative analysis

Finally, we give concrete examples of potential findings that the approaches can

uncover and demonstrate how analysis based on a single peak may lead to a different

outcome depending on the choice of the peak.

The intervention-driven changes of individual peaks from two lipids along with

the covariate effects inferred by Models 1 and 3 are shown in Figure 9. In the case of

the sphingomyelin SM(d18:1/22:0), there were strong covariate effects inferred by

Model 3 but many of these effects became weaker when inferred based on multiple

peaks by Model 1. On the contrary, Model 3 inferred weak covariate effects for

the ceramide Cer(d18:1/17:0) but based on multiple peaks and Model 1, one of

the effects was actually among the top-5 % strongest effects across the observed

lipidome.

Conclusion

We have empirically demonstrated that a model-based integration of multiple peaks

can lead to an improved accuracy in the inference of covariate effects, and we
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introduced a novel method for this task. While the sample-size is always restricted

by external constraints such as the experiment budget or the availability of suitable

patients, the inference based on multiple peaks gives a shortcut to extracting

more information from the limited set of samples, thereby directly addressing

the “small n, large p” problem. However, some types of systematic measurement

error, such as some batch effects, escape this treatment and can only be reduced

by introducing independent replicates. Based on the results presented in this work,

we argue that additional peaks are especially useful when the signal-to-noise ratio

is low and the differences between sample groups are small.

We suggest that all the detected peaks that can be associated with a compound

should be taken into account in the comparative analysis. This is possible through

the two-step generative modeling approach presented in this work: (1) by identifying

the peaks that can be associated with one compound through clustering the peaks

based on their shape similarity and (2) by the inference of covariate effects on

the clusters, each representing one compound.
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9. Böcker, S., Letzel, M.C., Lipták, Z., Pervukhin, A.: SIRIUS: decomposing isotope patterns for metabolite

identification. Bioinformatics 25(2), 218–224 (2009). doi:10.1093/bioinformatics/btn603

10. Steuer, R.: Review: on the analysis and interpretation of correlations in metabolomic data. Brief Bioinform

7(2), 151–158 (2006). doi:10.1093/bib/bbl009

11. Heinonen, M., Shen, H., Zamboni, N., Rousu, J.: Metabolite identification and molecular fingerprint prediction

through machine learning. Bioinformatics 28(18), 2333–2341 (2012). doi:10.1093/bioinformatics/bts437

12. Boccard, J., Kalousis, A., Hilario, M., Lantéri, P., Hanafi, M., Mazerolles, G., Wolfender, J.-L., Carrupt, P.-A.,

Rudaz, S.: Standard machine learning algorithms applied to UPLC-TOF/MS metabolic fingerprinting for the

discovery of wound biomarkers in Arabidopsis thaliana. Chemometr Intell Lab 104(1), 20–27 (2010).

doi:10.1016/j.chemolab.2010.03.003
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Figure 1 A schematic of the positions of typical adduct peaks [7] in the RT-m/z plane for two

lipids, the ceramide Cer(d18:1/17:0) and the sphingomyelin SM(d18:1/22:0). An adduct peak

is formed by an ion attaching to the compound. At the finer detail, each peak in the figure

consists of multiple isotope peaks few atomic units apart, as shown for Cer(d18:1/17:0) in

Figure 2. Even though the distinct isotope peaks are not visible to the eye here, they are clearly

separable by the mass spectrometer. In the figure, adduct types and compounds are marked by

colors and characters, respectively.
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Figure 2 Natural isotopic distribution of the mass of a typical lipid,

the ceramide Cer(d18:1/17:0). The presence of atomic isotopes leads to the appearance of

multiple mass spectral peaks from the compound. Some isotopes are very similar by their mass

but still differentiable by the mass spectrometer. The isotope peaks have distinct mass-to-charge

ratios at the same retention time (Figure 1).
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Figure 3 Flow chart of the method. (a) Peaks are clustered by their shapes. (b) Covariate effects

are inferred based on the intensities of the clustered peaks.
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1Figure 4 The use of data from multiple peaks and the peak shape information increased

the accuracy at detecting significant covariate effects on simulated data. Accuracy of

Models 1, 2 and 3 for simulated data is shown as a function of the sample-size in two settings:

normal and high level of noise (left: σ2 = 1, and right: σ2 = 5, respectively). Top (a-b): Accuracy

at inferring the significance of the generated covariate effects. Bottom (c-d): Normalized

information distance (NID) between the inferred and the true clustering. An entirely random and

an exactly correct clustering correspond to a NID of 1 and 0, respectively.
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Figure 5 The performance of Model 1 improved when more peaks per compound were

available in the simulated data. Curves A, B and C show the accuracy as a function of

sample-size for simulated data with 15, 7 and 3 peaks per compound, respectively.
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Figure 6 Model 1 had a more accurate quantification of the covariate effects for the spike-in

compounds as well as for the unchanged non-annotated compounds in the benchmark

experiment. Root-mean-square error (RMSE; y-axis) between the inferred and true covariate

effects is smaller for Model 1 (All peaks) than for the single-peak approach (Single peak) at all

the magnitudes of the true effect (x-axis). Differences were statistically significant for changes

of 0 to 40 % (Table 3 in Additional file 1).
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Figure 7 Model 1 (All peaks) had a better accuracy at the prediction of signs of covariate

effects for previously unseen lipids in the lipidomic gene-silencing data set compared to

Model 3 (Single peak). The difference became pronounced when simulated noise was added to

the data. The prediction was based on the inferred covariate effects of compounds from the same

lipid family and was done in a cross-validation setting. In the task, the effects of the seven

gene-silencing treatments were predicted on the three most abundant families of lipids in two time

points. Points σ = 0 and σ > 0 on the x-axis show the prediction accuracy (y-axis) for the original

data and the data with added noise, respectively.
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Figure 8 The covariate effects inferred by Model 1 (All peaks) were more robust to noise

compared to Model 3 (Single peak). At moderate levels of noise, which is the regime of many

biological experiments, the confidence intervals over 100 randomizations did not overlap at all.

The robustness was quantified as the Spearman correlation (y-axis) between the effects inferred

from the noisy and noise-free versions of the lipidomic gene silencing data set as a function of

the level of noise (x-axis).
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1Figure 9 Example clusters of peaks from the lipidomic gene silencing data with differences in

the covariate effects inferred based on a single peak and multiple peaks. The heat maps show

changes in the lipid concentrations driven by the gene silencing interventions (columns). Covariate

effects inferred by Models 3 and 1 using a single peak and all peaks, respectively, are shown on

the two bottom rows of each heat map. The log2 fold changes of each peak associated with

the compound are shown on the top rows. Changes that by the magnitude fall to the top-5 %

across the entire observed lipidome are highlighted by the symbol ”T.“ Top (a):

The sphingomyelin SM(d18:1-22:0) with three peaks. Many strong changes for SM(d18:1-22:0)

became weaker when they were inferred based on all three peaks. Bottom (b):

The ceramide Cer(d18:1-17:0) with six peaks. The effect of the SCAP silencing

for Cer(d18:1-17:0) at 72 hours became strong when it was inferred based on all six peaks.
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