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Abstract. Bayesian inference often requires approximating the poste-
rior distribution with Markov Chain Monte Carlo (MCMC) sampling. A
central problem with MCMC is how to detect whether the simulation has
converged. The samples come from the true posterior distribution only
after convergence. A common solution is to start several simulations from
different starting points, and measure overlap of the different chains. We
point out that Linear Discriminant Analysis (LDA) minimizes the over-
lap measured by the usual multivariate overlap measure. Hence, LDA
is a justified method for visualizing convergence. However, LDA makes
restrictive assumptions about the distributions of the chains and their
relationships. These restrictions can be relaxed by a recently introduced
extension.

1 Introduction

Probabilistic generative modeling is one of the theoretical foundations of current
mainstream machine learning and data analysis. Bayesian inference makes very
accurate but computationally intensive predictions possible, and gives rigorous
methods for model selection and complexity control. In a nutshell, the uncer-
tainty in the data is converted into uncertainty of the model parameters in the
form of a distribution. Inference of parameter values and of predictions is then
done based on this distribution.

Bayesian inference is potentially very powerful but closed-form solutions are
seldom available. Inference has to be based on either sophisticated approximation
methods or simulations with Markov Chain Monte Carlo (MCMC) [1] sampling.
MCMC sampling is a very versatile yet computationally intensive procedure.
The main practical problem of MCMC is how to assess whether the simulation
has converged. The resulting samples come from the true distribution only after
convergence.

There are several strategies for monitoring convergence [2]. Often in practice
convergence is assessed by starting the simulation from several different initial
conditions, and by monitoring when the different simulation chains become suf-
ficiently mixed together. The mixing can be monitored visually on scatter plots
of the MCMC samples against all pairs of variables, which is of course feasible



only for models with few parameters. An alternative is to measure convergence
quantitatively; measures of the overlap of the different sampling chains have
been proposed by Brooks and Gelman [3]. The measures have the problem that
rules of thumb are required for deciding whether the simulation has converged
or not, and hence they are often complemented with visualizations. The other
advantage of visualizations is that they are useful also for analyzing reasons of
convergence problems.

It turns out that the main multivariate convergence measure equals the cost
function of a one-dimensional LDA (for a definition of LDA see [4]), a method
that discriminates between data classes. Here the classes are the different sam-
pling chains. Our first main result or suggestion is to use LDA for visual eval-
uation of convergence. It has a rigorous criterion for visualizing convergence
and complements the existing quantitative measures. Our second main result is
an extension of the LDA visualization by applying a less restrictive measure of
the overlap of the chains, resulting in a connection with a recent extension of
discriminant analysis.

2 Bayesian modeling in a nutshell

In Bayesian modeling the relationship between the data y and the parameters
θ of the model is defined by the likelihood p(y|θ). Knowledge about the param-
eter values before observing the data is given by the prior distribution p(θ).
By combining these we get the posterior distribution that represents our knowl-
edge about the parameter values after observing the data. The posterior can be
calculated from the prior and likelihood with the Bayes formula

p(θ|y) =
p(y|θ)p(θ)

∫

p(y|θ)p(θ)dθ
, (1)

where
∫

p(y|θ)p(θ)dθ is a normalizing term.
While in maximum likelihood estimation a single parameter value is sought,

in Bayesian data analysis the result is the whole posterior distribution. This
makes it possible to take our uncertainty about the parameter values into account
in inference. A Bayesian model can be used to predict new values ỹ according
to the posterior predictive distribution

p(ỹ|y) =

∫

p(ỹ|θ)p(θ|y)dθ , (2)

where the uncertainty of the parameter values has been taken into account by
integrating over the posterior distribution.

In practice the posterior distribution is usually not known in closed form
and has to be approximated. A common method for approximation is MCMC
sampling. MCMC generates samples xt that are distributed proportionally to
the posterior distribution. These samples can be used to estimate any statistic
of the distribution and integrals over the posterior get approximated with sums
over samples.



3 Monitoring convergence using multiple sequences

3.1 Measuring convergence

One of the most common methods for monitoring MCMC convergence is the po-
tential scale reduction factor (PSRF) proposed by Gelman and Rubin [5]. Mul-
tiple MCMC sequences are started from different (overdispersed) initial points
and compared. At convergence the chains should come from the same distribu-
tion, which is assessed by comparing the variance and mean of each chain to the
variance and mean of the combined chain.

The PSRF is defined for one-dimensional data as follows. A number (m) of
parallel chains are started, with 2n samples each. Only the last n potentially
better converged samples from each chain are used. The between-chain variance
B/n and pooled within-chain variance W are defined by

B

n
=

1

m − 1

m
∑

j=1

(x̄j· − x̄
··
)
2

and (3)

W =
1

m(n − 1)

m
∑

j=1

n
∑

t=1

(xjt − x̄j·)
2

, (4)

where x̄j· is the mean of the samples in chain j and x̄
··

is the mean of the
combined chains.

By taking the sampling variability of the combined mean into account we get
a pooled estimate for the posterior variance

V̂ =
n − 1

n
W +

(

1 +
1

m

)

B

n
. (5)

Finally an estimate R̂ of PSRF is obtained by dividing the pooled posterior
variance estimate with the pooled within chain variance,

R̂ =
V̂

W
. (6)

If the chains have converged, the PSRF is close to one, which makes it a useful
indicator of convergence. It is not a perfect indicator, however, since it does not
guarantee convergence. The chains might not have traveled the whole state space
yet and might discover possible new areas of high probability. Additionally, it
does not take higher-order moments into account, only the mean and variance,
and it is applicable to only one variable at a time.

Brooks and Gelman [3] have extended the PSRF to a multivariate version,
MPSRF. It is defined, similarly to the univariate PSRF, in terms of the estimate
of the posterior covariance matrix V̂, which we get from (5) by replacing the



scalar variances B/n and W with the covariance matrices

B

n
=

1

m − 1

m
∑

j=1

(x̄j· − x̄
··
) (x̄j· − x̄

··
)
T

and (7)

W =
1

m(n − 1)

m
∑

j=1

n
∑

t=1

(xjt − x̄j·) (xjt − x̄j·)
T

. (8)

In the multivariate case the comparison of within-chain variance to the pooled
variance requires comparing the matrices. Brooks and Gelman chose to summa-
rize the comparison by a maximum root statistic which gives the maximum
scale reduction factor of any linear projection of x. The estimate R̂p of MPSRF
is defined by

R̂p = max
a

aT V̂a

aTWa
(9)

=
n − 1

n
+

(

m + 1

m

)

max
a

aTBa/n

aT Wa
(10)

=
n − 1

n
+

(

m + 1

m

)

λ1, (11)

where the λ1 is the largest eigenvalue of the matrix W−1B/n.
This criterion is very closely related to linear discriminant analysis (LDA).

The goal of (a one-dimensional) LDA is to find the linear transformation y = aT x

that maximizes the variance between classes, relative to the variance within
classes. More formally, LDA solves the problem

max
a

aT Bssa

aT Wssa
, (12)

where Bss and Wss are the between and within sum of squares and cross prod-
ucts (SSCP) matrices which differ only by a constant scale from the correspond-
ing covariance matrices. This is a generalized eigenvalue problem, and its solution
a is the eigenvector corresponding to the largest eigenvalue of W−1

ss Bss.
Hence, disregarding the constants, MPSRF equals the cost function of (a

one-dimensional) LDA. In other words, optimizing the LDA is equivalent to
choosing the component that best detects convergence, in the sense of MPSRF.
Monitoring convergence by MPSRF or by the LDA cost function is equivalent;
if the chains can be discriminated, then they have not converged.

3.2 Visualizing convergence

Current practice. It is common practice to complement the convergence mea-
sures by visualizations of the MCMC chains. Visualizations are useful especially
when analyzing reasons of convergence problems. Convergence measures can only
tell that the simulations did not convergence, not why they did not.



MCMC chains have traditionally been visualized in three ways. Each variable
in the chain can be plotted as a separate time series, or alternatively the marginal
distributions can be visualized as histograms. The third option is a scatter or
contour plot of two parameters at a time, possibly showing the trajectory of
the chain on the projection. The obvious problem with these visualizations is
that they do not scale up to large models with lots of parameters. The number
of displays would be large, and it would be hard to grasp the underlying high-
dimensional relationships of the chains based on the component-wise displays.

Some new methods have been suggested. For three dimensional distributions
advanced computer graphics methods can be used to visualize the shape of the
distribution [6]. Alternatively, if the outputs of the models can be visualized
in an intuitive way, the chain can be visualized by animating the outputs of
models corresponding to successive MCMC samples [7]. These visualizations
are, however, applicable only to special models.

A principled way of visualizing convergence. The worst problem with the straight-
forward visualization methods is that they lack the means to focus on visualizing
variables or dimensions that are relevant for convergence. This worsens the prob-
lems caused by the required large number of plots.

In the previous Section (3.1) it was noted that the MPSRF measure of MCMC
convergence (10) is closely related to linear discriminant analysis (LDA). We will
use this connection to justify the use of LDA to visualize the convergence of the
MCMC sampler.

In summary, LDA finds a projection that best separates the classes in the
sense of maximizing the between-class variation relative to within-class variation.
For a one-dimensional projection this was shown to be equivalent to choosing
MPSRF as the criterion for the projection.

There is no reason to confine the visualization to be one-dimensional. LDA
chooses the second direction or projection axis to be the eigenvector correspond-
ing to the second largest eigenvalue, etc. A K-dimensional LDA then maximizes
∑K

k=1 λk, the relative between-chain variance representable by the K directions
together. This criterion could actually be used as an alternative convergence cri-
terion to MPSRF; it takes directly into account deviation in several directions
instead of only the dominant one.

When LDA is used to visualize MCMC convergence we in effect try to find
a linear transformation that visualizes the convergence problems as clearly as
possible, in the sense of the (extended) MPSRF measure.

3.3 Informative components

Brooks and Gelman [3] noted that any statistic calculated from the separate
chains should be equal to the one calculated from the combined chain when the
chains have reached convergence, as the distributions should then be the same.
The LDA connection above resulted from comparing means and variances. We
propose that instead of comparing a statistic, a more general measure would
result from comparing the distributions themselves. A natural measure is the



mutual information between the distributions and the chain index. The difference
between this and the LDA (MPSRF) criterion is discussed below.

Problems with LDA. LDA assumes that each class is normally distributed with
the same covariance matrix in each class. If the assumptions are correct, LDA
discriminates between two classes optimally. This does not hold in general, how-
ever, in particular not before MCMC convergence for small data.

Another problem surfaces when generalizing LDA to several classes. The
objective considers only pairwise divergences between classes, and no longer
corresponds to optimal discrimination. See the Appendix for details.

To address the above problems, we suggest to complement LDA-based anal-
ysis with a generalization of LDA. The projection is linear but the assumptions
about the distribution of data are relaxed.

Relevant component analysis. A recent method for finding informative or rele-

vant components directly maximizes their class-prediction power [8]. Formally,
the conditional (log) likelihood

L =
∑

(x,c)

log p(c|WT x) (13)

of classes is maximized within the subspace formed by the components. Here
x is the sample, c is its class, and W is the (orthogonal) projection matrix
whose columns are the component directions. The optimal projection is specific
to the number of components sought. The well-defined objective for finite data,
the likelihood, is asymptotically equivalent to the mutual information between
components and classes. The task of finding such components was coined relevant

component analysis (RCA). A sketch of the connection between LDA and RCA
is presented in the Appendix.

In this paper the c are the different chains, and RCA maximizes the (log)
likelihood of correctly guessing which MCMC chain each sample is from. For
converged chains one cannot (asymptotically) do better than a random guess;
hence, large likelihood indicates non-convergence which can be assessed visually
from the RCA projection.

With finite data, we do not know the exact densities p(c|WT x), but we can
optimize the projection parameters by using a nonparametric estimate p̂(c|WTx)
in the projection space. Since this estimate is non-parametric, RCA makes no
distributional assumptions. For details on RCA and its optimization, see [8].
Technically, we replaced the stochastic gradient in [8] by conjugate (batch) gra-
dient optimization.

The main justification for using RCA here is that it maximizes a flexible
measure of separation of the classes. It remains an empirical question of how
much the RCA improves the LDA-based visualizations. In Section 4.2 we apply
both methods to assess convergence in a relatively simple task.



4 Analysis of a MCMC run

To demonstrate visual analysis of a MCMC sampler we have chosen a data
set that contains reaction times for schizophrenics and nonschizophrenics. The
model and the problem are described in the book Bayesian Data Analysis [9]
(Example 16.4, p.426) and were also used to illustrate the use of the PSRF
measure in the original article [5].

The data consist of (log) reaction time measurements from 11 nonschizophren-
ics and 6 schizophrenics. Each person had their reaction time measured 30 times.
It is believed that schizophrenics suffer from attentional deficit on some mea-
surements as well as an overall motor reflex retardation.

For the nonschitzophrenics the reaction time is modeled as a random-effects
model with a distinct mean αj for each person and a common variance σ2

y .
The reaction times for the schizophrenics are modeled with a two-component
Gaussian mixture. With probability (1 − λ) there is no attention lapse and the
response time has mean αj and variance σ2

y . With probability λ there is a delay
and the response time has mean αj +τ and the same variance σ2

y. To address the
question about the amount of motor reflex retardation a hierarchical population
model is devised. The means of the reaction times αj are modeled to be normally
distributed with a mean µ for the nonschizophrenics and a mean µ + β for the
schizophrenics. The model can be expressed as

yij |αj , ζij , φ ∼ N(αj + τζij , σ
2
y), (14)

αj |ζij , φ ∼ N(µ + βSj , σ
2
α), (15)

ζij |φ ∼ Bernoulli(λSj), (16)

where φ = (σ2
α, β, λ, τ, µ, σ2

y) contains the hyperparameters and yij is the re-
sponse i from person j. The term Sj is an indicator that equals 1 for schizophren-
ics and 0 for nonschizophrenics, and ζij is an unobserved indicator that equals
1 if the observation arose from a delayed response and 0 otherwise.

The hyperparameters in φ are assigned a noninformative uniform prior den-
sity. Additionally, τ , σ2

α and σ2
y are restricted to be positive. The mixture pa-

rameter λ is further restricted to the interval [0.001, 0.999]. As all necessary con-
ditional distributions were readily available, Gibbs sampling, a form of MCMC,
was used.

Ten chains of 1500 samples each were generated from random starting po-
sitions. The MPSRF measure showed that the sampling had not converged.
Calculating the univariate PSRF measures for the 23 variables we were inter-
ested in (all except the indicator variables ζij) showed that several variables had
not converged. At this point we still had no idea what had gone wrong with the
sampler, or was the convergence just slow.

4.1 Visualization with LDA

Gaining insight on the problem. In order to better understand the behavior of
the chains we visualized a part of the simulation, samples [200, 600] around the



point 350 after which the MPSRF measure seemed to have stabilized at a high
value.

Chain 3
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Fig. 1. Two-dimensional LDA projection of all samples from the interval [200, 600].
The ellipses have been drawn by hand to mark the chains.

It is clear from the LDA projection (Fig. 1) that there are five distinct clusters
in the sample set. By color coding (not shown) the different chains with different
colors it was easy to identify the chains. Six of the chains were clustered together
and the other four formed a separate cluster each. Three of the chains were
separated from the main cluster on discriminative component 1 and one on
component 2. We additionally checked whether any of the separate chains could
still be moving toward the common cluster, by color coding based on sampling
time. There was no visible hint of that.

Verifying the findings. A further study showed that four of the chains had ended
up in a degenerate part of the parameter space, that is, in a part where the
mixture model has collapsed to a one-component model, already very soon after
the initialization. For three of these chains (chains 1, 2, and 3) the probability
of a sample being generated by a delayed mixture component was so low that
no samples were assigned to it. This was apparent already by a quick look at
the one-dimensional time series plots of these chains. The delay parameter τ had
not changed at all from the starting position.

The reason for the fourth chain appearing separated is the reverse. Nearly all
samples came from the mixture component representing delayed measurements,
and hence the β and τ could not be identified separately. It was harder to
diagnose the problem with this chain because the time series plots looked normal.
The LDA visualization in Figure 1 helped to quickly identify the problem areas.

Checking the behavior of the sampler near convergence. At this point we could
have modified our model or our sampler to remove the problems. If there are a
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Fig. 2. a) MPSRF measure calculated from the nondegenerate chains (5-10). b) LDA
projection of the nondegenerate samples from the interval [200, 600]. The ellipses have
been drawn by hand to mark early samples from chains 5 and 6. The samples can be
visualized by a time-based color code.

sufficient number of chains, a rapid alternative is to discard the degenerate ones.
We computed the MPSRF measure again for the remaining chains. It is clear
from Figure 2a that this time convergence has been reached after about 350
samples. For a demonstration we created a new LDA projection showing only
the nondegenerate chains. In Figure 2b we can see that there are two ’tails’ from
chains which are moving toward the common distribution. By color coding the
samples based on time we verified that the samples were indeed early samples
and that the two chains became combined with the other chains after the early
samples. Thus we could conjecture that the simulation had converged this time.

4.2 Visualization with RCA

We finally compare qualitatively the less restrictive RCA projection with LDA
to verify that it gives the same or better insights on convergence.

From the two-dimensional RCA projection of all samples from the interval
[200, 600] (Fig. 3) we can see that RCA has discovered the same five clusters
as LDA. Four of the clusters are composed of a single chain each, and the last
consisted of six chains. In addition, RCA has found the two ’tails’ of samples,
generated by two chains converging toward the multi-chain cluster. These are the
same ’tails’ that were found using LDA on the nondegenerate chains (Fig. 2b).

Chains 1 and 2 are far from the others in both the LDA and the RCA
visualizations. However, the LDA visualization kept the chain 4 far apart as well,
whereas RCA placed it closer to chains 5-10 and instead separated the ’tails’ of
early samples of chains 5 and 6. Since the chain 4 can still be discriminated well,
this yields a more informative projection.

In conclusion, RCA visualization displayed all the discovered convergence
properties in a single two-dimensional visualization. No additional studies were
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Fig. 3. a) 2D RCA projection of all samples from the interval [200, 600]. b) Enlarged
view of the box in lower right corner of a.

required as with LDA. (A visualization corresponding to Figure 2b was computed
just in case, and revealed only the same properties.)

5 Discussion

We have shown how to create visualizations for MCMC convergence analysis
with linear discriminant analysis (LDA). Problems can be identified quickly us-
ing only a few visualizations. Justification for LDA comes from its connection
to a common convergence measure: Its goal is to separate the different simula-
tion chains, and if it is successful the simulation has not converged. This was
demonstrated in a case study.

It is straightforward to extend the black-and-white visualizations of this Pro-
ceedings with color coding. If the different chains are colored differently it is easy
to distinguish them in the figures. Coloring samples with shades that change as
a function of time brings visible the evolution of the chains during sampling.
Further possibilities for extensions are coloring according to the likelihood of
the sampled models, or coloring according to the prior or posterior density of
the samples. This would clearly show how much the posterior differs from the
prior, for example.

If more details about the behavior of the sampler are of interest, some more
technical measures like acceptance ratio or autocorrelation within a window
around the sample could be visualized by the color code. This could possibly
identify areas where the sampler is performing poorly. These ideas could be
combined in an interactive visualization tool aimed at easy exploratory analysis
of the behavior of a MCMC sampler.

Even though LDA can be used for principled visualizations of MCMC chains,
it is based on assumptions that often do not hold. It assumes normally distributed
chains, which usually does not hold, and that the covariance matrices of the
chains are the same, which holds only after convergence. A new method, RCA,



is based on a more flexible measure of the overlap of the simulation chains: The
likelihood of predicting the chains, which asymptotically becomes the mutual
information. These theoretical connections justify the use of the RCA, and it
was demonstrated to work better than LDA in a small case study.

Finally, the objective function of RCA could additionally serve as a measure
of convergence, when compared with a naive estimate that simply predicts the
overall chain proportions. If the values are different, MCMC has not converged.
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Appendix: Connection between LDA and RCA

Reformulating LDA. For simplicity, consider only the first LDA component a.
Denote σ2

a
= aT Wssa/N , where N is the total number of samples. The LDA ob-

jective equals the variance of class centers along the projection direction, relative



to the within-class variance:

aTBssa

aT Wssa
=

1

Nσ2
a

aT Bssa =
∑

c

nc

N

(aT (x̄c. − x̄..))
2

σ2
a

. (17)

Since, for a scalar variable x, Ex1,x2
[(x1 − x2)

2] = 2E[x2] − 2(E[x])2 = 2E[(x −
E[x])2], the objective further equals (up to a constant multiplier) the weighted
sum of squared distances between class pairs:

2

Nσ2
a

aT Bssa =
∑

c1,c2

nc1
nc2

N2

(aT (x̄c1. − x̄c2.))
2

σ2
a

. (18)

Since aT a = 1, each Gaussian class has a variance of σ2
a

along the projection
dimension. Then, for each pair of classes c1 and c2, the rightmost term equals
the squared Mahalanobis distance of the projected class centers along the projec-
tion. This in turn equals the following symmetrized Kullback-Leibler divergence

between the distributions along the projection [10]:

1

σ2
a

(aT (x̄c1.−x̄c2.))
2 = DKL(p(aT x|c1), p(aT x|c2))+DKL(p(aT x|c2), p(aT x|c1))

(19)
LDA thus maximizes a sum of symmetrized Kullback-Leibler divergences be-
tween the classes along the projection, weighted by the fractions nc1

nc2
/N2.

Improving the cost function. Optimizing the above objective (18) does not re-
sult in optimal discrimination. We will improve it in two steps. First, for each
class pair (c1, c2), replace the symmetrization in (19) with the Jensen-Shannon

divergence. This helps to reinterpret the objective in a form that can be easily
generalized. For brevity, denote y = aT x, denote the proportions of the class
prior probabilities by pc1

= p(c1)/(p(c1)+p(c2)) and pc2
= p(c2)/(p(c1)+p(c2)),

and set q(y) = pc1
p(y|c1) + pc2

p(y|c2) = p(y|c1 ∨ c2), where c1 ∨ c2 referes to the
distribution containing only clases c1 and c2. The Jensen-Shannon divergence is

DJS(p(y, c1), p(y, c2)) = pc1
DKL (p(y|c1), q(y)) + pc2

DKL (p(y|c2), q(y))

= pc1

∫

p(y|c1) log
p(y|c1)

q(y)
dy + pc2

∫

p(y|c2) log
p(y|c2)

q(y)
dy

=

∫

∑

c=c1,c2

p(y|c)pc log
p(y|c)

q(y)
dy = I(y, c|c1 ∨ c2) . (20)

LDA then finds (roughly, due to the different symmetrization) the direction that
maximizes the sum of pairwise mutual informations between classes, weighted by
the class proportions. This suggests the natural extension to consider more than
just pairwise class interactions, and maximize the complete mutual information
I(c, y) between classes and projected data. It can be shown that as the amount
of data grows, the likelihood objective of RCA asymptotically equals I(c, y), up
to a constant. RCA is then a finite-data implementation of an LDA extension.


