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Abstract

The sequential information bottleneck (sIB)
algorithm clusters co-occurrence data such
as text documents vs. words. We introduce
a variant that models sparse co-occurrence
data by a generative process. This turns
the objective function of sIB, mutual infor-
mation, into a Bayes factor, while keeping
it intact asymptotically, for non-sparse data.
Experimental performance of the new algo-
rithm is comparable to the original sIB for
large data sets, and better for smaller, sparse
sets.

1. Introduction

In text document analysis, word order is commonly ig-
nored and documents are treated as “bags of words”.
Under this model, the sufficient statistics for a docu-
ment are the word counts n, telling how many times
each word y appears in the document.

For clustering purposes, we formally consider a set of
co-occurrences of two categorical variables X and Y.
Given exchangeability, a sufficient statistic for the co-
occurrences are the counts n,, of all value combina-
tions (z,y). The counts form a two-dimensional ma-
trix or contingency table. For a document collection,
the documents (X, rows) and words (Y, columns) form
the margins of this table. Clustering the document
collection, or any similarly expressible data, is equiva-
lent to merging rows of the corresponding contingency
table.

Methods for clustering contingency table margins have
been proposed earlier both in statistics (Gilula, 1986)
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and in machine learning (Tishby et al., 1999). Some
component models are closely related (e.g., Blei et al.,
2003; Buntine, 2002; Hofmann, 1999). We focus on
the sequential information bottleneck algorithm (sIB;
Slonim et al., 2002), motivated by the information
bottleneck principle (IB; Tishby et al., 1999).

Clustering the margins of a contingency table loses
information about the original margin variables. A
criterion for clustering would be to minimize loss of
such information that is common to the margins. In
other words, statistical dependences between the mar-
gins should be preserved. In the case of text docu-
ments, document clusters obtained by this criterion
would be informative about words of the documents.

IB and sIB perform this kind of clustering; they mea-
sure dependency of the margins by mutual informa-
tion. Mutual information is not defined for counts
obtained from finite data, but for probability distri-
butions. Its accuracy for finite, especially sparse data
sets, is then uncertain. We propose an alternative ob-
jective function defined for counts, and an algorithm
very similar to sIB. For large data sets the new ob-
jective function approaches mutual information, and
the algorithm approaches sIB. Empirical performance
is comparable to sIB and better for very sparse data.

The objective function is interpretable as a Bayes fac-
tor, or as a likelihood. The likelihood is a marginalized
version of the crisp-cluster likelihood interpretation of
IB (Slonim & Weiss, 2002, but see also the ACM model
in Hofmann & Puzicha, 1998).

1.1. Information Bottleneck

The information bottleneck (IB) principle for cluster-
ing rows of contingency tables is based on Shannon’s
information theory: It deals with the (asymptotic)
joint distribution p(z,y) of X and Y.



In information-theoretic terms, IB finds a representa-
tion T for the margin variable X, identified with the
distribution p(t|z). For clustering, ¢ can be interpreted
as clusters, and p(t|z) as degrees of cluster member-
ships.

Objective function of IB. IB minimizes I(X,T)—
BI(T,Y), a compromise between two mutual informa-
tions. The dependency term I(T,Y), tries to preserve
the structure of p(X,Y), while the complexity term
I(X,T) tries to keep T non-informative of X, which
can be seen as simplicity of the representation 7. In
a sense, the objective function implements a “bottle-
neck” for the dependency between X and Y through
T. (Note that as explained below, the simplicity con-
straint is relaxed in sIB.)

Variational optimization of the cost with respect to
p(t|x) leads to the set of equations

() = AL (D () p(y1)
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where Z(f, z) is a normalization term. The first equa-
tion characterizes the optimal clusters in the document
space X. Before normalization, they decay exponen-
tially with the Kullback-Leibler divergence from “doc-
ument prototypes” p(y|t).

Crisp clusters. From (1) it is clear that as 8 — oo,
optimal clusters tend to become crisp. That is, p(t|z)
approaches zero or one almost everywhere, and the
cost function I(X,T) — BI(T,Y) essentially becomes
I(T,Y), a measure of dependency between T' and Y.
Conversely, when I(T,Y) is variationally maximized
with respect to the clusters, the optimal clusters are
of the form p(t|z) € {0,1}.

If the motivation is to group the data, it is tempting
to at least finally set 8 — 0o. We focus on this case.

For crisp clusters, the representation 7', defined by
p(t|x), becomes a deterministic function t(z) : X — T.
The co-occurrences of T' and Y then form a (smaller)
contingency table, where the rows of the (X,Y) table
are merged according to t(x).

Below we will denote the (7,Y) table by N and its
entries by ngy,. Margins of the table are denoted by
ng = Zy Ny, Ny = Y, Ny, and the total number of
co-occurrences in the table by N = 7, =~ ny. Al
though the setting is more general, for convenience z,
y, and t are below called documents, words, and clus-
ters, respectively.

1.2. Sequential Information Bottleneck (sIB)

The sequential information bottleneck method (here
sIB for brevity; Slonim et al., 2002) produces crisp
clusters, p(t|z) € {0,1}, where each document belongs
to a single cluster. This corresponds to maximizing the
dependency between the clusters 7" and the words Y
measured by the mutual information I(7,Y). It may
therefore be seen as a margin-clustering contingency
table algorithm in the sense explained above.

Given an initial assignment of documents z to clus-
ters t, the sIB algorithm sequentially draws a random
document x from the clusters, and finds a new cluster
for it by minimizing a merging criterion. In the sIB
algorithm the merging criterion is (weighted) Jensen-
Shannon divergence D ;s between the word distribu-
tions of the relocated document and the candidate
cluster, i.e.,

(p(z) +p(#)) - Dys(p(Y|z), p(Y[t)[m1, 72)
= (p(x) +p(t)) - [m Dz (p(Y |2), p(Y))
+m D (p(Y]t), p(Y))]  (2)

where Dk is the Kullback-Leibler divergence, 7 =
p(z)/(p(z) +p(t)), m2 = p(t)/(p(z) + p(t)) and p(y) =
mip(y|z) + map(ylt).

In experiments sIB outperformed agglomerative IB, it-
erative double clustering, K-means and a number of
heuristic alternatives for sequential clustering (Slonim
et al., 2002). The sequential approach may also per-
form better than alternating optimization by equations
(1) (Slonim et al., 2002). It is therefore a good appli-
cation for the finite-data objective presented next.

2. Sequential Information Bottleneck
for Finite Data

Mutual information is an asymptotic quantity, defined
for document and word probabilities p(z) and p(y|z).
The implicit solution (1) of the IB optimization prob-
lem then also refers to probabilities. In straightfor-
ward data analysis tasks these are unknown; for IB
they need to be estimated from data. Slonim et al.
(2002) used the estimate p(y|z) = ngy/|X|, where ngy
is the count of occurrences of word y in document x,
and | X| is the total number of words in the document.
But relative word counts are noisy descriptors of the
content of the documents, and the noise is not visible
in such a straightforward estimate.

A solution is to replace the point estimates by the
posterior distributions of document content, given the
counts and the bag-of-words model. Uncertainty is in-



tegrated out only at the final stage of evaluating the
evidence for the model. Low word counts carrying only
little information are then correctly given less weight.
Assuming the bag-of-words model is sound, such anal-
ysis should better match the underlying topical cate-
gories, and improve generalization to new data.

We introduce a finite-data variant of the sIB method,
called finite sequential information bottleneck (fsIB),
that takes the finite counts into account probabilisti-
cally. The novelty is contained in the new objective
function; otherwise the resulting algorithm is identi-
cal to sIB with a similar time complexity and similar
convergence proofs.

We derive the objective from generative models and
their Bayes factors; at the limit of large co-occurrence
counts it is equivalent to mutual information.

2.1. Objective Function

We aim to measure the dependency between the rows
and the columns of the contingency table, given a cer-
tain clustering 7' of rows. The table is then indexed by
t (rows; for example document groups) and y (words).

The objective function should account for the un-
certainty of probabilities estimated from sparse data.
This is achieved by assuming a multinomial generative
process: the observed frequencies ny, are produced by
an underlying multinomial distribution with parame-
ters Gy, .

The objective function for fsIB, Cj;p, will compare
evidence for two hypotheses, or model families, that
could produce the observed data. The first family H,
assumes a free multinomial distribution, parameter-
ized by 8y,, over all cells. The second family H» as-
sumes independent multinomial margins ; and 6,; the
cell-wise probabilities are then restricted to products
0ty = 60, of the margin probabilities. The evidence
for these two hypotheses, dependent vs. independent
margins, can be compared by a Bayes factor (Good,
1976), where the uncertainty of the parameters 6 is
integrated out to compare the two hypotheses without
regard to the parameter values.

The Bayes factor can be shown to be (for details see
Peltonen et al., 2003)

p(N|H,)

~ Ht,y F(nty + Oéty)
p(N|Hs)

Ht I‘(nt + O[t)
where the a4y > 0 are parameters of Dirichlet priors

of the co-occurrence counts and the a; > 0 of the sizes
of the clusters. These parameters can be seen as pre-

= Cyn (3)

chosen counts of “virtual data”, co-occurrence counts
and counts of data within clusters, respectively. We
call the priors “consistent” if the cluster counts match
the co-occurrence counts of virtual data, that is, if

oy = Zy Oy

For document clustering we will use two kinds of pri-
ors. Both are empirical priors computed from the
whole corpus to distribute the “virtual data” accord-
ing to the overall proportions of Y in the corpus, with
the same total as in the hypergeometric formula (see

below). In both priors oy, = ny%, where |Y] is the
number of possible values of Y (size of the dictionary)
and N is the total number of co-occurrences. The pri-
ors differ for ay: we set either oy =1 or ay = |Y'|. The
first choice (fsIB 1) is used in the hypergeometric for-
mula but it leaves the priors defined by ay, and o4
inconsistent; the second choice (fsIB 2) makes them

consistent.

2.2. Some interpretations of the Bayes factor

Connection to the hypergeometric formula.
Note that if ayy = a; = 1, the gamma functions in
(3) turn to factorials, and (3) becomes (the inverse
of) the likelihood of data given the observed margin
counts and the assumption of independent margins
(H2) (Rao, 1973).

Interpretation as evidence for independent
margins. A special interpretation of the Bayes fac-
tor is possible if the priors are “consistent”. It can
then be shown to be the inverse of the evidence term in
the posterior probability of independent margins (Pel-
tonen et al., 2003): p(Hz2|H1,N) x p(H2|H1)/Cfsis,
where H, is a subfamily of Hy for consistent priors, and
p(H2|Hy) and p(H,|H;,N) are the prior and posterior
probabilities for the contingency table being generated
from H, given that it is generated from H;. On the
right-hand side Cfsp contains all terms that depend
on the data. Maximizing the Bayes factor with re-
spect to the clustering 7" minimizes the evidence that
the margins are independent.

Interpretation as marginalized likelihood.
When consistent priors are used, it turns out that
the objective function (3) can also be interpreted as
the marginal likelihood p(IN|Hj3) under a family Hj
that models each cluster with a separate multinomial
distribution, with a Dirichlet prior a, for each cluster
t (cf. Sinkkonen et al., 2002). The likelihood is
marginalized over the individual models (parameter
values) in Hs.



2.3. Finite Data and the Original Sequential
IB

On document priors. The equations (1) are de-
fined for any distributions p(z) and p(y|z). Slonim
et al. (2002) tested sIB using a uniform prior over
documents, p(z) = 1/|X|, where |X| is the number
of documents in the dataset. However, emphasizing
long documents as more informative may sometimes
be more desirable. Then the non-uniform document
prior proportional to the number of words in the doc-
uments, p(z) = n, /N, is an obvious candidate (n, is
the number of word occurrences in the document and
N is the total number).

The objectives are asymptotically equivalent.
In the limit of large co-occurrence counts, i.e., N —
00, the fsIB objective function Cyp can be shown to
be equivalent to the sIB objective I(T,Y’) with non-
uniform document priors (Peltonen et al., 2003).

For a uniform document prior such a connection is not
known, however. In Section 3 we test the sIB method
with both priors.

Other connections. The proposed model is addi-
tionally closely related to the asymmetric clustering
model ACM (Hofmann & Puzicha, 1998). ACM uses
a maximum likelihood point estimate, whereas we in-
tegrate over the word distribution parameters.

2.4. Optimization

Slonim et al. (2002) introduced a “template algo-
rithm” for clustering with so-called decomposable ob-
jective functions, i.e., sums over functions that depend
only on an individual cluster. Applying this template
for mutual information yielded the sIB algorithm.

The same template algorithm can be applied to fsIB,
since the log of (3) is decomposable. The resulting
algorithm resembles sIB; only the objective function
and similarity measure are replaced.

Cluster merging criterion. In sIB, an extracted
document was assigned to the new cluster for which a
weighted Jensen-Shannon divergence was minimized.
For {sIB, we instead maximize the Bayes factor (3).

If a document d is extracted from some cluster ¢y and
merged to a cluster ¢, the Bayes factor is changed by

a factor of

T(ne + o)

T(ne + |d| + o)

(4)
times a constant (Peltonen et al., 2003). Here ny, and
ng are the co-occurrence counts after the document has
been extracted from %y, dy is the co-occurrence count
of word y in the document, and |d| = }_, d,. Note
that this quantity depends only on the co-occurrences
in the document and the cluster ¢, not on the rest of
the contingency table. The document is assigned to
the cluster ¢ that yields the largest value of (4).

F(nty + dy + Oéty)
s da =
df IB( t) (1;[ F(nty +Oéty)

Interpretation of the criterion. It can be shown
that the cluster merging criterion (4) is asymptotically
equal to the weighted Jensen-Shannon divergence (2)
used in sequential IB (Peltonen et al., 2003).

Notice that when ny,, and ny, have been updated after
extracting the document, the criterion (4) does not de-
pend further on the original cluster ¢;. In fact, adding
a completely new document to the contingency table
yields the same criterion. This allows probabilistic in-
terpretations of the criterion.

In general, if new data N5 is added to the contingency

table, the change in the Bayes factor is given by
p(N,Nz'Hl) . p(Nle) — p(N2|H1aN) (5)
p(N,Nz|Hz) p(N|H1)  p(N2|Hz,N)’

i.e., it is a Bayes factor comparing H; and H, with
data No after witnessing N. For the fsIB algorithm
the “new data” is the previously extracted document,
i.e., N2 =d.

Furthermore, if “consistent priors” are used, the cri-
terion (4) is the inverse of the new evidence term for
updating the Bayesian posterior probability of inde-
pendent margins. That is, we have

p(N2|H1, H27 N)
p(N2|Hy,N)

p(Hs|Hy,N,Ny) = -p(Hz|Hy,N)

(6)
where the first term on the right is (inverse to) the
cluster merging criterion when Hy C H;, and the sec-
ond term is independent of N,. The first term contains
all factors that depend on the new data; minimizing it
keeps the evidence of independent margins minimal.

In the case of “consistent priors”, there is a third
probabilistic interpretation: equation (4) is equal (up
to a constant factor) to p(d|n;), the probability that
the (unknown) multinomial distribution that gener-
ated the words n; in cluster ¢ also generated the words



in d, when a Dirichlet prior with parameters oy, is
used for the multinomial distribution.

The algorithm. Pseudo-code for the fsIB optimiza-
tion algorithm is presented in Figure 1 (compare to
the sIB algorithm by Slonim et al., 2002). To find a
good local minimum, fsIB takes n restarts from ran-
dom initial conditions (just as the sIB algorithm; mul-
tiple initializations help avoid bad local minima). For
each restart, the algorithm continues until it has per-
formed mazx L iterations over the data set, or until the
number of cluster changes per iteration is at most a
fraction e of the number of objects.

Input:
| X | objects to be clustered
Parameters: K, n, maxL, €

Output:
A partition T of X into K clusters

Main Loop:
Fori=1,...,n
T; + random partition of X.
c+0,C + 0,done = FALSE
While not done
Forj=1,...,|X]|
Draw z; out of t(z;)
t"e% (x;) = argming dgsp({x;}, 1)
If ¢me% (x;) # t(z;) then c —c+1
Merge z; into t"¢"(z;)
C+C+1
If C > mazL or ¢ < €-|X| then
done <~ TRUE
T + arg maxr; CstB(Ti)

Figure 1. Pseudo-code for the fsIB optimization algorithm.
In the context of clustering text documents, the z; are
documents with word co-occurrences {z;}, and t(z;) and
t"°%(z;) are the old and new clusters of extracted docu-
ment z;. The overall criterion Cfyp is computed by (3)
and the cluster merging criterion dgp by (4).

Convergence and complexity. The convergence
result for the sIB algorithm (Slonim et al., 2002) also
holds for the fsIB algorithm; since cluster changes are
directly chosen to maximize the objective function, it
never decreases during the iteration. Moreover, the
fsIB objective is upper bounded for any dataset as long
as oty and o4 are positive, since the gamma functions
are then bounded from above and below. The empiri-
cal priors used in Section 3 satisfy this requirement.

Since sIB and fsIB use the same optimization method
with different objective functions (which are equally
complex to evaluate), both methods have the same
time complexity O(K|Y|) per iteration. The total time
complexity is bounded by O(nLK|X||Y|) for both
methods, where n is the number of restarts, L is the
number of cycles over X and K is the number of clus-
ters. For relative speeds in practice, see Section 3.4.

3. Empirical Tests

In this section we test experimentally whether fsIB
improves unsupervised clustering results. Since the
sequential IB (sIB) algorithm has already been com-
pared to several alternatives in (Slonim et al., 2002),
and because sIB outperformed the alternatives, we will
compare fsIB only to sIB.

3.1. The Data Sets

We used the same datasets as Slonim et al. (2002).
The Twenty Newsgroups (20NG; Lang, 1995) and
Reuters-21578 (Reuters; available from http://
www.daviddlewis.com/resources/testcollections/
reuters21578/) datasets are standard test corpora of
text documents. The 20NG set consists of articles
from 20 Usenet newsgroups, and the Reuters set
consists of short news articles from the Reuters
stream.

In both datasets, a categorization of the documents is
known; for the 20NG set the newsgroups are the 20
categories. For the Reuters set news articles belong
in one or more topic categories; the ten largest cate-
gories were chosen. For both datasets, the number of
clusters sought equaled the number of categories. The
categories themselves were not used in training, but
were only used to evaluate the clustering results.

Slonim et al. (2002) additionally compared the meth-
ods on a selection of subproblems from the two cor-
pora; here we only tested the full problems.

Preprocessing. For the 20NG set the preprocess-
ing included removing stopwords, setting characters
to lowercase, replacing digits with zeroes, ignoring
non-alphanumeric characters and pruning words that
only occurred once. For the Reuters set a similar but
slightly more complicated preprocessing was done, in-
cluding more advanced word splitting, and replacing
numeric expressions with indicator tags.

After the initial preprocessing the 2000 most infor-
mative words were selected, having the largest terms



in the equation of mutual information between docu-
ments and words (Slonim et al., 2002). That is, the
selected words y had the largest values of

p(z,y)
;p(w, y)log EOR (7)

Note that the “informativeness” is based on a joint
distribution estimate p(z,y) which could be computed
with either a uniform or non-uniform document prior,
as described in Section 2.3. Here we used the non-
uniform prior. Lastly, documents that had less than 10
words were discarded. This yielded 18656 documents
for the 20NG set and 8452 for the Reuters set.

3.2. Test Setup

Comparison methods. The fsIB algorithm is
compared against the sIB algorithm, with two vari-
ants for both methods. For sequential IB, both uni-
form (sIB 1) and nonuniform (sIB 2) document priors
are tried. For fsIB, the two kinds of empirical priors
described in Section 2.1 will be used, the inconsistent
(fsIB 1) and consistent (fsIB 2). For all variants we
set the parameters of the optimization algorithm to
mazxL = 30, e =0 and n = 15.

Data subdivision. The fsIB algorithm is expected
to be especially effective for sparse data; in the large
data limit it approaches sIB 2. To test the effect of
sparseness, both datasets were divided into an increas-
ing number of subsets (from 1 to 160) by stratified
sampling; with a fixed number of clusters, this leaves
progressively less samples per cluster.

For each subdivision of a dataset (20NG or Reuters),
each subset was clustered by all four methods. Their
performances were then compared across the subsets
by paired t-test.

Goodness measure. The goodness of the cluster-
ing solutions is evaluated by their micro-averaged pre-
cision (see below) with respect to human-given cate-
gories: Usenet newsgroup for the 20NG set, and news
categories for the Reuters set. (In the Reuters set
a document may be listed under several news cate-
gories.)

Assume first that each cluster of a clustering solution
T is given the class label of the dominant class in the
cluster. The clustering classifies each document to the
label of its cluster. Given this classification, the micro-
averaged precision of the entire clustering T is defined

NPV |GEVNE S XX s
2 fi(e, T) + f2(e,T) | X[ 4

(8)
where f1(c,T) is the number of documents correctly
classified to class ¢ (their true classes include c¢),
f2(c,T) is the number of documents incorrectly clas-
sified to ¢ and |X| is the total number of documents.
That is, P(T') is a kind of classification success rate.

P(T)

Slonim et al. (2002) introduced a thresholding strat-
egy to increase precision at the expense of recall. The
same strategy could be used for fsIB but is not used
here.

3.3. Results

Figure 2 presents the micro-averaged precisions, av-
eraged over subsets, for the 20NG and Reuters sets.
As expected, performance decreases for all methods as
the data becomes sparse (documents/cluster becomes
small). However, the fsIB algorithm with consistent
priors (fsIB 2) yields the best results on the sparsest
data. As the amount of data increases the fsIB results
converge toward sIB results obtained with the nonuni-
form prior (sIB 2). Again, this is expected due to the
asymptotical equivalence of the objective functions.

For fsIB, the consistent priors are clearly better for
small data sets. For sequential IB, the differences be-
tween document priors are less clear: a uniform prior
is better on the small Reuters subsets, but worse on
the whole set. The non-uniform prior is better on the
small 20NG subsets, but worse on the whole set.

It is surprising that the prior seems to affect perfor-
mance in a way that depends on the size of the data
set. As explained above, the significance of the whole-
set results (rightmost points in Figure 2) is not known,
though, and for the single available run the algorithms
may, for instance, have been caught in local minima.

Why are sIB 2 and the fsIB 1 & 2 bad for the full
20NG set? The length of Usenet articles varies a lot, so
our first hypothesis was that the three algorithms, by
weighting documents by their length, give some docu-
ments bad weights. Evidently this is not the case, for
removing the longest and shortest five percent of the
documents did not made a significant difference. Other
potential reasons for the poor performance include rel-
atively constant headers, repetition due to quotations
or binary postings, or other kind of deviations from
the bag of the words model. Pure chance cannot be
completely ruled out either; there is only one full set,



c

S

i)

(5]

o

o

e}

Q

[=2}

I

2

¢

° -

£ o4l R = sB1 ||
T e sIB 2
o—":\i et ---fsiB1

i — fsIB2
0.35 : :
10" 10 10°

documents per cluster

o
©
a

micro—averaged precision
o
[oe]

0.75r == sIB1 ]
Pt e SIB2
o --- fsiB1
— fsIB2
0.7 ‘ ‘
10" 10° 10°

documents per cluster

Figure 2. Performance of the methods as a function of data
sparsity. Top: Twenty Newsgroups data, bottom: Reuters-
21578 data, both divided into 1-160 subsets to simulate
sparsity. Performance is measured as the average micro-
averaged precision (eqn 8; higher is better), and data spar-
sity as the number of documents per cluster. Both values
are averages over data subsets. The methods are: sIB with
uniform document prior (sIB 1), sIB with normalized doc-
ument length as document prior (sIB 2), fsIB with incon-
sistent cluster prior (fsIB 1), fsIB with consistent cluster
prior (fsIB 2). The best method was compared to the sec-
ond best, the second to the third and so on, by a two-tailed
paired t-test. A point is marked with a plus sign if the t-
test returned p < 0.05, and with an asterisk if p < 0.01.

and hence no significance testing can be done.

Why is fsIB 1 bad for the small subsets of Reuters
data? With small data sets, the relatively strong prior
in the denominator of the fsIB 1 cost favors uniform
cluster sizes, which causes difficulties if the real cluster
sizes diverge. And indeed, the sizes of the clusters
extracted from the full Reuters set are unequal but
similar irrespective of the prior (fsIB 1 vs. fsIB 2),
while from the small Reuters subsets fsIB 1 finds much
more uniform-sized clusters than fsIB 2.
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Figure 3. Convergence speed measured by the number of
iterations over the data, averaged over restarts and subsets.
Top: Twenty Newsgroups data, bottom: Reuters-21578
data.

3.4. Convergence Speed

Figure 3 presents convergence speeds for the algo-
rithms, in average numbers of iterations over the re-
spective datasets. For all algorithms, the convergence
seems roughly logarithmic with respect to the number
of documents per cluster.

The sIB with uniform document prior (sIB 1) con-
verges on average slightly slower than sIB 2. The fsIB
with consistent priors (fsIB 2) on average converges
with the fewest iterations, except on the whole 20NG
set (rightmost point). However, since the log-Gamma
function in fsIB is much slower to compute than the
logarithm in sIB, fsIB still takes more time to run than
sIB (roughly 2.5 times as much).

4. Conclusions and Discussion

The finite sequential information bottleneck (fsIB) al-
gorithm gives a probabilistic Bayes factor interpreta-
tion to distributional crisp clustering by the sequential
Information Bottleneck method. Asymptotically, the



two objective functions become equivalent. fsIB inher-
its desirable properties such as convergence, compu-
tational complexity and a thresholding strategy from
sequential IB.

While Bayes factors are commonly used in “Bayesian
hypothesis testing” to compare two alternative model
families, it is not common to use them as criteria for
optimizing models. We are not aware of their use for
clustering before the related continuous-space model
(Sinkkonen et al., 2002). Their main advantage is that
uncertainty in the parameter values can be properly
and easily taken into account. There are two potential
difficulties in their use. First, although they are easily
computed in closed form for our models, they may in
general be hard to compute. Second, it may be hard
to choose suitable priors. This may not be a severe
problem, however, since even simple choices outper-
formed alternative methods, and more sophisticated
hierarchical priors would probably be even better.

In empirical tests, fsIB yields significantly improved
clustering performance on small (sparse) data sets. On
large sets it performs comparably to sequential IB; the
insignificant relative goodness varies with the data.

More experiments are required to find out which kinds
of data fsIB is best for.

Of the two tested fsIB alternatives, the one with “con-
sistent” priors (in the sense discussed in Section 2.1)
was clearly better. This suggests a more general con-
jecture to favor consistent priors. In this paper the
strengths of the priors were pre-chosen (they were not
optimized in the experiments)—better results could be
obtained by making this more flexible.

Although this paper only considered one-sided cluster-
ing, the Bayes factor objective function is straightfor-
wardly applicable to two-sided clustering.
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