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Abstract

We introduce methods that adapt the metric of the data
space to reflect relevance, as indicated by auziliary data
associated with the primary data samples. The derived
metric is especially useful in descriptive data analysis
by unsupervised methods such as the Self-Organizing
Maps. In this work we use the new metric to re-
fine SOM-based analyses of the factors affecting the
bankruptcy risk of companies.

1 Introduction

The goal of this work is to develop methods for data-
driven search of statistical dependencies in data. The
so-called unsupervised learning methods such as clus-
tering, density estimation, and visualization methods
are useful for exploring data sets without explicit prior
hypotheses. It is hoped that the resulting summaries
and descriptions of the properties of the data help make
new discoveries in an interactive, iteratively refined
process.

The problem with unsupervised learning is that not
all statistical properties in the data set are interesting.
There is noise, and not even all the “true” dependen-
cies are relevant or interesting to the analyst. In pat-
tern discovery it is well known that many discovered
patterns are trivial or not interesting. In clustering the
distinctions between clusters may be made over irrele-
vant features. Things get worse when the sample size
and dimensionality increase—indeed, the current chal-
lenge for the exploration methods lies in the massive
amounts of electronically available data.

By contrast, in supervised methods the well-defined
goal, be it the minimization of classification error or
prediction error or something else, implicitly deter-
mines which aspects of the data are interesting. Many
supervised methods are universal approximators: with
increasing model complexity, they can asymptotically

approximate any function from the inputs to the de-
sired outputs. Hence the methods are invariant to a
general class of data transformations and hence robust
with respect to the representation of data.

In this work the novel insight is to utilize, in unsuper-
vised learning, the knowledge that implicitly exists in
signals that are traditionally used in supervised learn-
ing. In our case study we use the future bankruptcy
state of companies as a guiding signal to explore finan-
cial statements. Unlike in supervised learning, how-
ever, the goal is to make data-driven discoveries from
the statistical properties of the data given the supervi-
sion, i.e., after the supervising signal has been utilized.
Technically, the goal is to automatically learn metrics
which measure distances along important or relevant
directions pointed out by the supervisory signal, and
to use the metrics in unsupervised learning.

Metrics have been derived from probabilistic models
but without the supervisory signal (see e.g. [1, 2]). In
addition, numerous methods exist for transforming the
data for improved classification or prediction accuracy.
To our knowledge the principle and our solution [3] to
carry out unsupervised learning in a “supervised” met-
ric is new. Below we demonstrate its use with the Self-
Organizing Maps, in the analysis of the bankruptcy risk
of companies.

2 The Learning Metric

We aim at finding interesting or relevant features of the
primary data x € X C R”, samples of a vector-valued
random variable X. Samples ¢, or auziliary data, of an
associated random variable are also available, and it is
assumed that a change in the conditional distribution
p(c|x) signifies an interesting change in x.

We will represent the relevance of a variation in x as
a distance. Together such distances constitute a met-
ric. A metric has the advantage of being a rather gen-



eral description of the relationships of x, and even a
non-Euclidean metric can be readily incorporated into
many unsupervised methods. Below we will first intro-
duce a suitable metric as a mathematical, differential-
geometric (see e.g. [4]) construction. The motivation
for why precisely that kind of a metric is particularly
useful for data analysis, and its relationship to alter-
native approaches will be presented at the end of the
section.

Assume tentatively that the original Euclidean met-
ric of the space X is arbitrarily chosen and hence ir-
relevant. The proximity relations of x or, disregard-
ing possible singularities, the topology are important,
however. Then all metrics obtained by local rescalings
of the original Euclidean metric retain the important
structure of X. Such metrics are of the form

d3 (x,x + dx) = dx" J(x)dx , (1)

where J(x) is a positive semidefinite matrix depending
on x. Although not necessary for the application in
this paper, global distances are defined as minimal path
integrals; this gives a Riemannian metric [4]. Note that
the usual Euclidean metric can be expressed locally by
d?(x,x+dx) = dx"Idx, where I is the identity matrix.
Thus the two metrics span the same topology if J(x) is
non-singular. (d and dj, would then be called equivalent
metrics. In practice J may be singular; then the change
of the metric is projective.)

Let us then return to our original goal: measurement of
relevant differences. It was assumed that differences in
the distribution p(c|x) signify relevant changes. Such
differences can be measured by the Kullback-Leibler
divergences, and a proof by Kullback [5] implies that
for nearby points x and x + dx the divergence can be
computed in the form of (1), assuming the densities
p(c|x) are differentiable with respect to x.

This makes it possible to locally measure the interest-
ingness (signified by changes in p(c|x)) while preserv-
ing the proximities in the X space: we plug in a J
such that the dy, locally agree with the Kullback-Leibler
distances computed from the conditional probabilities
p(c|x). The right form for J(x) is

369 = By { (2 wspte) (2= logp(c|x>)T} ,

(2)
where the operator Ej|x) denotes expectation over
the conditional distribution p(c|x). The J is essen-
tially a Fisher information matriz, and distances ob-
tained from the matrix are called (Fisher) information
distances or (Fisher) information metrics in the infor-

mation geometry literature (see, e.g., [4]). Tradition-
ally the arguments of the Fisher information matrix
are parameters of generative probabilistic models, and
the metric measures distances in the model space. Our
new contribution is to use the x in the role of the pa-
rameters to obtain a metric in the data space. In the
generated metric the conditional density p(c|x) changes
evenly in all directions and at all points x of the data
space. The metric can also be shown to be invariant to
a large class of smooth transformations of the space X,
called diffeomorphisms.

Above, the probabilities p(c|x) have been assumed
known. The derivation of the metric from the p(c|x) is
not affected by the original Euclidean structure over X,
but in many applications the p(c|x) are unknown and
an estimate p(c|x) has to be used instead. The esti-
mators necessarily depend somewhat on the Euclidean
structure and hence in practice the metric dy, is only
asymptotically invariant to the original metric struc-
ture of X.

Note that distances could in principle be mea-
sured directly as the Kullback-Leibler divergence
D(p(c|x)||p(c|y)) between any two points x and y. The
definition would not yield a metric, however, because
the divergences are asymmetrical and the triangle equa-
tion does not hold. It would also completely ignore
the structure of the X-space, and that is not desir-
able for two reasons: (1) In data analysis applications
we often wish to interpret the findings in terms of the
original data variables which is harder if the topology
has been changed; (2) When estimating the densities
p(c|x) from a finite data set the generalization over
the data space x needs be based on some topology (or
metric). Usually it is based on the topology of the X-
space, which would be inconsistent with the proximity
relationships induced by the direct Kullback-Leibler di-

vergence D(p(c|x)||p(c|y))-

Note that the common feature extraction or data trans-
formation methods change the metric as well. If they
are diffeomorphisms then our metric is in principle in-
variant to them. They may, however, change the topol-
ogy as well. Our metric can, of course, be applied after
the transformation, which is beneficial if the change of
the topology is.

Below, we assume that only data pairs {(c¥,x*)}; of
auxiliary and primary data are available.



3 Self-Organizing Maps in Learning Metrics

Below we describe how learning metrics can be used
with the Self-Organizing Map (SOM) [6], a method
widely used in data analysis and visualization. A SOM
consists of a grid of Ngoas units, and a model vector
m,; is associated to each unit 7. After the SOM has been
computed the model vectors follow the input data in
an ordered fashion: model vectors of close-by units on
the lattice remain close-by in the input space.

3.1 SOM algorithm

The SOM algorithm iterates two steps: winner selec-
tion and adaptation. At each iteration ¢, the index of
the winning unit w closest to the current input sample
x(t) is first sought by

w(x(t)) = arg miin d?(x(t), m;(t)) , (3)

where d is a distance function, commonly Euclidean.
Then the model vectors are adapted according to

0

Bmi

d*(x(t), m;(1)) . (4)

m;(t+ 1) = my(t) — %hm(t)

If d is the Euclidean distance, the adaptation becomes
m;(t + 1) = my(t) + hy () (x(t) —my(t) . (5)

Here hy,;(t) is the neighbourhood function, a decreasing
function of the distance between units w and i on the
map lattice. Both the height and width of h,,;(t) are
decreased gradually as the iteration progresses [6].

In learning metrics, both steps must be modified. The
winner is selected by the new distances i.e. d in (3)
becomes replaced by dj, which is in principle defined
as the minimal path integral. In practice we simplify
the computation by relying on the local approximation;
the winner selection then becomes

w(x(t)) = argmin(my (t) —x(£)) "I (x(£)) (my () —x(1)) ,

(6)
where (1) has been used to approximate the metric
locally around x(¢). The approximation is likely to be
accurate for model vectors close to x (by their true
distances dy,). We assume it to be accurate enough to
keep the selection of the winning unit correct most of
the time, but experimental results are of course needed
for final conclusion. The case study in Section 4 is
favourable.

In the adaptation step, each model vector m;(¢) is up-
dated in the direction where the distance to x(t) de-
creases most rapidly. In the Fuclidean metric the di-
rection is that of the negative gradient, 2(m;(t) —x(t)),

but in the more general Riemannian metric the direc-
tion is oposite to the natural gradient [7]
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Using again the local approximation this becomes
J(x) 723 (x) (m;(t) — x) = 2(my(t) —x) ,  (8)

which is just the gradient of the Euclidean metric. Thus
the model vectors will be adapted with the familiar rule

(5).

3.2 Probability Estimation

The winner selection (6) depends on J(x), i.e. on the
auxiliary probabilities p(c|x) and their gradients. In
practice these must be estimated from the data. In
this paper we use two classical estimates: Parzen ker-
nels and a version of Gaussian mixtures called Mixture
Discriminant Analysis 2 (MDA2) [8, 9]. Both estimate
the joint probabilities p(c, x) with a similar parametric
form, from which p(c|x) are obtained by the Bayes rule.

Consider a generative mixture where the pair (x,c¢) is
generated by a component chosen by the probabilities
{m;};» 7 = 1,...,Ny. The jth component generates
x from a density b;(x; 6;), parametrized by 6;, and c
from a multinomial distribution {{;;};, ¢ = 1,..., N¢c.
The conditional estimates p(c|x) are then obtained
from the Bayes rule:

> mi&ibi(x; 0;)
> mibj(x;0;)

9)

pleilx) =

Here b; are chosen to be Gaussian with a common co-
variance 0°I. For MDA2, the parameters m;, 8; (loca-
tions of the Gaussians), and &j; are estimated with the
EM algorithm. In the Parzen kernel estimate, there is
a kernel b; for each data sample x;. Thus 6; = x;,
mj = 1/Ny, and &;; = 1 for the value of ¢ correspond-
ing to the data sample c;, and zero otherwise. It can
be shown that for these models, the local distances (1)
become

otd?(x,x + dx) =

2
Eptepe) { [AX" (Eptus peiso) 103} = Eptus o, {0,1)]” )
(10)

where p(u;|x; 6;) is the probability that the jth mix-
ture component generated the input sample given x
and the parameters, and p(uj|x, ¢;; 8;) is the probabil-
ity with the auxiliary value ¢; also given.



Figure 1: Posterior probabilities of classes ¢y and c> on
two SOMs representing the same data, in the
Euclidean (a-b) and the learning metric (c-d).

3.3 Summary

To summarize, the computation of a Self-Organizing
Map in the learning metric consists of the following
steps:

1. Build estimates of the probabilities p(c|x). Use
for example the Parzen or MDA?2 estimates discussed
above.

2. Train the SOM by iterating the following steps: (a)
Select a sample x(t) and winner unit w(x(t)) by (6).
For Parzen and MDA2 models, use (10) to compute
distances. (b) Adapt model vectors toward x(t) by (5).

If (10) is used for distance calculation, the computa-
tional complexity of the winner selection step becomes
O(ND[MNo(NU + NSOM)), where NDIM is the di-
mensionality of X, whereas for Euclidean distances it
is O(NprmNsoa). The complexity of the adaptation
step is of course unchanged.

3.4 A Demonstration

Let us demonstrate the change of metric by computing
SOMs for a toy data set both in the Euclidean metric
(SOM-E) and in the learning metric (SOM-L).

The primary data is evenly distributed within the unit
cube. The auxiliary data takes four values, from ¢g to
c3. Their conditional distributions depend linearly on
the horizontal dimensions, but are indepedent of the
vertical dimension. That is, only the horizontal plane
is considered important—representing the vertical di-
mension just wastes resources.

We trained the SOM-E and SOM-L to this data and
visualized the conditional distribution of the auxiliary
discrete variable on the SOMs (Fig. 1). The distri-
butions are smoother on the SOM-L, and the true uni-
modality of the distributions is particularly well visible.
By contrast, the SOM-E displays give a false impres-
sion of bimodality for ¢3. The reason for the difference
becomes apparent once we take a look at the distri-
bution of the model vectors inside the cube (Fig. 2).

Figure 2: Projections of the model vectors of the two
SOMs in Fig. 1. Left: SOM-E, right: SOM-L.

The SOM-E folds to represent the entire data distri-
bution, while the SOM-L represents only the relevant
dimensions, as desired.

4 Case Study: Bankruptcy Analysis

In this section we apply the SOM and learning met-
rics to bankruptcy analysis. Bankruptcies are widely
studied, for they have a tangible impact on business
life. Most of the quantitative studies have aimed at
prediction, the main approaches being classification
and probability estimation on the basis of the financial
statements given by the companies. A complementary
approach is the analysis of the effects of corporate be-
haviour on the bankruptcy risk. A qualitative work
was done by Argenti [10], and recently the SOM has
been applied to this problem by Kiviluoto and Bergius
[11]. Our research complements their work by using
the company status (bankrupt or not) to build learn-
ing metrics for SOM training. Since the metric de-
scribes changes in bankruptcy risk, the SOM should
emphasize the most interesting features of the finan-
cial statements, i.e. those that contribute locally to
the bankruptcies.

4.1 Data

The data consisted of financial statements from about
1500 Finnish companies. Multiple statements from dif-
ferent years were treated as independent samples; of all
the 6195 statements 158 concerned companies which
later collapsed. 23 financial indicators were extracted
from the statements, including measures of growth,
profitability and liquidity. The auxiliary variable in-
dicated whether the company went bankrupt within 3
years of the statement.

The data were randomly divided into an estimation set
and a test set of roughly equal sizes. For the estima-
tion set, the Parzen estimate and the Gaussian mixture



model (Ny = 10) of the previous section were used to
compute hexagonal SOMs of 20x 10 units in the learn-
ing metrics. A Euclidean SOM of similar size was com-
puted for reference.

4.2 Goodness measures

At least the following factors contribute to the good-
ness of a learning metric SOM as a description of the
bankruptcy data:

(1) The quality of the probability estimate. In this
paper we will not measure this, and just resort to stan-
dard estimators.

(2) The accuracy of the SOMs in representing the
bankruptcy risk. The SOM units can be regarded as
local probability estimators of their Voronoi regions by
assigning to them the estimated probabilities of the
auxiliary data at the point of the model vectors. The
SOM as an estimator can then be evaluated by the con-
ditional log-likelihood of the test data, estimated at the
winner unit locations:

Zlogﬁ(ck|mw(x’“)) : (11)
k

(3) Visualization quality, i.e., smoothness and organi-
zation. Here we will resort to visual comparisons.

4.3 Results

The test-set likelihoods for the probability estimators
and the SOMs were computed over a wide range of
the parameter o that governs the smoothness of the
estimates. The likelihoods of the probability estima-
tors approximately indicate the best possible SOM
performance, and a “model” always predicting prior
bankruptcy probabilities served as a lower limit of use-
ful results.

The accuracies of SOMs in describing the test set are
shown in Fig. 3. As expected, the SOM-L performs
better than the SOM-E; the results are roughly equal
only for the Parzen estimator with very small o; then
the estimates of the conditional probabilities are pre-
sumably very uneven, resulting in an uneven metric.
The accuracy difference between SOM-E and SOM-L
was statistically significant (p < 0.002; sign test for
the peaks of the accuracy curves with 10-fold cross-
validation).

Visually, the SOM-L displays were comparable or bet-
ter than the SOM-E displays. Sample visualizations
of the data made by the SOM-L are shown in Fig. 4.
There is a novel kind of a display included, depicting
the relevance of a data variable at different locations
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Figure 3: The accuracy (11) of SOM-Es and SOM-Ls in
representing bankruptcy risk. The p(c|x) are
estimated by Gaussian kernels (top) and Gaus-
sian mixtures with Ny = 10 (bottom).

of the map. The relevance r;(x) of the variable I at x
is computed as the contribution of the variable to the
distance,
T
e J(x)e
n(x) = S (12)
Yo €md (X)em

where e; is the unit vector parallel to the axis corre-
sponding to the [th input variable.

5 Discussion

In this paper, a novel approach to data analysis is de-
scribed. A relevance-indicating signal is used to guide
distance-based unsupervised learning methods to con-
centrate on relevant properties of data. Put in another
way, we have introduced a way to carry out “semisu-
pervised” exploratory data analysis.

The metric of the data space is modified to measure rel-
evant changes in the data. As a case study, we use the
resulting non-Euclidean metric in the Self-Organizing
Map algorithm. The modified SOM method was ap-
plied to financial statements of enterprises, and the in-
dicator of whether the company went bankrupt or not
guided the analysis. The resulting SOM then describes



Figure 4: SOM-L displays of the bankruptcy data. a Pos-
terior bankruptcy probability, b empirical ratio
of healthy to bankrupt companies, ¢ distribu-
tion and d relevance of a profitability indica-
tor. The hexagons correspond to SOM units
and light shades denote high values.

only such variation of the financial statements that cor-
relates with the bankruptcy sensitivity of the compa-
nies. The results were satisfactory both qualitatively
and quantitatively in that the companies that later
went bankrupt became better separated on the learning
metric SOM, and the factors affecting the bankruptcy
were well presented.

The goodness of the method depends on the estimator
used to approximate the relevance-indicating signal or
auxiliary data. We will later investigate the proper
choice of the estimator in more detail.

The method described in this paper is a product of
a larger research project where the aim is to develop
learning metric methods for exploratory data analysis.
So far we have developed a related clustering method
and applied it to gene expression data [12] and text doc-
uments [13]. More details of the bankruptcy prediction
application described in this paper are available in [3].
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