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tWe introdu
e methods that adapt the metri
 of the dataspa
e to re
e
t relevan
e, as indi
ated by auxiliary dataasso
iated with the primary data samples. The derivedmetri
 is espe
ially useful in des
riptive data analysisby unsupervised methods su
h as the Self-OrganizingMaps. In this work we use the new metri
 to re-�ne SOM-based analyses of the fa
tors a�e
ting thebankrupt
y risk of 
ompanies.1 Introdu
tionThe goal of this work is to develop methods for data-driven sear
h of statisti
al dependen
ies in data. Theso-
alled unsupervised learning methods su
h as 
lus-tering, density estimation, and visualization methodsare useful for exploring data sets without expli
it priorhypotheses. It is hoped that the resulting summariesand des
riptions of the properties of the data help makenew dis
overies in an intera
tive, iteratively re�nedpro
ess.The problem with unsupervised learning is that notall statisti
al properties in the data set are interesting.There is noise, and not even all the \true" dependen-
ies are relevant or interesting to the analyst. In pat-tern dis
overy it is well known that many dis
overedpatterns are trivial or not interesting. In 
lustering thedistin
tions between 
lusters may be made over irrele-vant features. Things get worse when the sample sizeand dimensionality in
rease|indeed, the 
urrent 
hal-lenge for the exploration methods lies in the massiveamounts of ele
troni
ally available data.By 
ontrast, in supervised methods the well-de�nedgoal, be it the minimization of 
lassi�
ation error orpredi
tion error or something else, impli
itly deter-mines whi
h aspe
ts of the data are interesting. Manysupervised methods are universal approximators: within
reasing model 
omplexity, they 
an asymptoti
ally

approximate any fun
tion from the inputs to the de-sired outputs. Hen
e the methods are invariant to ageneral 
lass of data transformations and hen
e robustwith respe
t to the representation of data.In this work the novel insight is to utilize, in unsuper-vised learning, the knowledge that impli
itly exists insignals that are traditionally used in supervised learn-ing. In our 
ase study we use the future bankrupt
ystate of 
ompanies as a guiding signal to explore �nan-
ial statements. Unlike in supervised learning, how-ever, the goal is to make data-driven dis
overies fromthe statisti
al properties of the data given the supervi-sion, i.e., after the supervising signal has been utilized.Te
hni
ally, the goal is to automati
ally learn metri
swhi
h measure distan
es along important or relevantdire
tions pointed out by the supervisory signal, andto use the metri
s in unsupervised learning.Metri
s have been derived from probabilisti
 modelsbut without the supervisory signal (see e.g. [1, 2℄). Inaddition, numerous methods exist for transforming thedata for improved 
lassi�
ation or predi
tion a

ura
y.To our knowledge the prin
iple and our solution [3℄ to
arry out unsupervised learning in a \supervised" met-ri
 is new. Below we demonstrate its use with the Self-Organizing Maps, in the analysis of the bankrupt
y riskof 
ompanies.2 The Learning Metri
We aim at �nding interesting or relevant features of theprimary data x 2 X � Rn , samples of a ve
tor-valuedrandom variable X . Samples 
, or auxiliary data, of anasso
iated random variable are also available, and it isassumed that a 
hange in the 
onditional distributionp(
jx) signi�es an interesting 
hange in x.We will represent the relevan
e of a variation in x asa distan
e. Together su
h distan
es 
onstitute a met-ri
. A metri
 has the advantage of being a rather gen-



eral des
ription of the relationships of x, and even anon-Eu
lidean metri
 
an be readily in
orporated intomany unsupervised methods. Below we will �rst intro-du
e a suitable metri
 as a mathemati
al, di�erential-geometri
 (see e.g. [4℄) 
onstru
tion. The motivationfor why pre
isely that kind of a metri
 is parti
ularlyuseful for data analysis, and its relationship to alter-native approa
hes will be presented at the end of these
tion.Assume tentatively that the original Eu
lidean met-ri
 of the spa
e X is arbitrarily 
hosen and hen
e ir-relevant. The proximity relations of x or, disregard-ing possible singularities, the topology are important,however. Then all metri
s obtained by lo
al res
alingsof the original Eu
lidean metri
 retain the importantstru
ture of X. Su
h metri
s are of the formd2L(x;x+ dx) = dxTJ(x)dx ; (1)where J(x) is a positive semide�nite matrix dependingon x. Although not ne
essary for the appli
ation inthis paper, global distan
es are de�ned as minimal pathintegrals; this gives a Riemannian metri
 [4℄. Note thatthe usual Eu
lidean metri
 
an be expressed lo
ally byd2(x;x+dx) = dxT Idx, where I is the identity matrix.Thus the two metri
s span the same topology if J(x) isnon-singular. (d and dL would then be 
alled equivalentmetri
s. In pra
ti
e J may be singular; then the 
hangeof the metri
 is proje
tive.)Let us then return to our original goal: measurement ofrelevant di�eren
es. It was assumed that di�eren
es inthe distribution p(
jx) signify relevant 
hanges. Su
hdi�eren
es 
an be measured by the Kullba
k-Leiblerdivergen
es, and a proof by Kullba
k [5℄ implies thatfor nearby points x and x + dx the divergen
e 
an be
omputed in the form of (1), assuming the densitiesp(
jx) are di�erentiable with respe
t to x.This makes it possible to lo
ally measure the interest-ingness (signi�ed by 
hanges in p(
jx)) while preserv-ing the proximities in the X spa
e: we plug in a Jsu
h that the dL lo
ally agree with the Kullba
k-Leiblerdistan
es 
omputed from the 
onditional probabilitiesp(
jx). The right form for J(x) isJ(x) = Ep(
jx)(� ��x log p(
jx)�� ��x log p(
jx)�T) ;(2)where the operator Ep(
jx) denotes expe
tation overthe 
onditional distribution p(
jx). The J is essen-tially a Fisher information matrix, and distan
es ob-tained from the matrix are 
alled (Fisher) informationdistan
es or (Fisher) information metri
s in the infor-

mation geometry literature (see, e.g., [4℄). Tradition-ally the arguments of the Fisher information matrixare parameters of generative probabilisti
 models, andthe metri
 measures distan
es in the model spa
e. Ournew 
ontribution is to use the x in the role of the pa-rameters to obtain a metri
 in the data spa
e. In thegenerated metri
 the 
onditional density p(
jx) 
hangesevenly in all dire
tions and at all points x of the dataspa
e. The metri
 
an also be shown to be invariant toa large 
lass of smooth transformations of the spa
e X,
alled di�eomorphisms.Above, the probabilities p(
jx) have been assumedknown. The derivation of the metri
 from the p(
jx) isnot a�e
ted by the original Eu
lidean stru
ture over X,but in many appli
ations the p(
jx) are unknown andan estimate p̂(
jx) has to be used instead. The esti-mators ne
essarily depend somewhat on the Eu
lideanstru
ture and hen
e in pra
ti
e the metri
 dL is onlyasymptoti
ally invariant to the original metri
 stru
-ture of X.Note that distan
es 
ould in prin
iple be mea-sured dire
tly as the Kullba
k-Leibler divergen
eD(p(
jx)jjp(
jy)) between any two points x and y. Thede�nition would not yield a metri
, however, be
ausethe divergen
es are asymmetri
al and the triangle equa-tion does not hold. It would also 
ompletely ignorethe stru
ture of the X-spa
e, and that is not desir-able for two reasons: (1) In data analysis appli
ationswe often wish to interpret the �ndings in terms of theoriginal data variables whi
h is harder if the topologyhas been 
hanged; (2) When estimating the densitiesp(
jx) from a �nite data set the generalization overthe data spa
e x needs be based on some topology (ormetri
). Usually it is based on the topology of the X-spa
e, whi
h would be in
onsistent with the proximityrelationships indu
ed by the dire
t Kullba
k-Leibler di-vergen
e D(p(
jx)jjp(
jy)).Note that the 
ommon feature extra
tion or data trans-formation methods 
hange the metri
 as well. If theyare di�eomorphisms then our metri
 is in prin
iple in-variant to them. They may, however, 
hange the topol-ogy as well. Our metri
 
an, of 
ourse, be applied afterthe transformation, whi
h is bene�
ial if the 
hange ofthe topology is.Below, we assume that only data pairs f(
k;xk)gk ofauxiliary and primary data are available.



3 Self-Organizing Maps in Learning Metri
sBelow we des
ribe how learning metri
s 
an be usedwith the Self-Organizing Map (SOM) [6℄, a methodwidely used in data analysis and visualization. A SOM
onsists of a grid of NSOM units, and a model ve
tormi is asso
iated to ea
h unit i. After the SOM has been
omputed the model ve
tors follow the input data inan ordered fashion: model ve
tors of 
lose-by units onthe latti
e remain 
lose-by in the input spa
e.3.1 SOM algorithmThe SOM algorithm iterates two steps: winner sele
-tion and adaptation. At ea
h iteration t, the index ofthe winning unit w 
losest to the 
urrent input samplex(t) is �rst sought byw(x(t)) = argmini d2(x(t);mi(t)) ; (3)where d is a distan
e fun
tion, 
ommonly Eu
lidean.Then the model ve
tors are adapted a

ording tomi(t+1) =mi(t)� 12hwi(t) ��mi d2(x(t);mi(t)) : (4)If d is the Eu
lidean distan
e, the adaptation be
omesmi(t+ 1) =mi(t) + hwi(t)(x(t) �mi(t)) : (5)Here hwi(t) is the neighbourhood fun
tion, a de
reasingfun
tion of the distan
e between units w and i on themap latti
e. Both the height and width of hwi(t) arede
reased gradually as the iteration progresses [6℄.In learning metri
s, both steps must be modi�ed. Thewinner is sele
ted by the new distan
es i.e. d in (3)be
omes repla
ed by dL whi
h is in prin
iple de�nedas the minimal path integral. In pra
ti
e we simplifythe 
omputation by relying on the lo
al approximation;the winner sele
tion then be
omesw(x(t)) = argmini (mi(t)�x(t))T J(x(t))(mi(t)�x(t)) ;(6)where (1) has been used to approximate the metri
lo
ally around x(t). The approximation is likely to bea

urate for model ve
tors 
lose to x (by their truedistan
es dL). We assume it to be a

urate enough tokeep the sele
tion of the winning unit 
orre
t most ofthe time, but experimental results are of 
ourse neededfor �nal 
on
lusion. The 
ase study in Se
tion 4 isfavourable.In the adaptation step, ea
h model ve
tor mi(t) is up-dated in the dire
tion where the distan
e to x(t) de-
reases most rapidly. In the Eu
lidean metri
 the di-re
tion is that of the negative gradient, 2(mi(t)�x(t)),

but in the more general Riemannian metri
 the dire
-tion is oposite to the natural gradient [7℄J(x)�1 ��mi(t)d2L(x;mi(t)) : (7)Using again the lo
al approximation this be
omesJ(x)�12J(x)(mi(t)� x) = 2(mi(t)� x) ; (8)whi
h is just the gradient of the Eu
lidean metri
. Thusthe model ve
tors will be adapted with the familiar rule(5).3.2 Probability EstimationThe winner sele
tion (6) depends on J(x), i.e. on theauxiliary probabilities p(
jx) and their gradients. Inpra
ti
e these must be estimated from the data. Inthis paper we use two 
lassi
al estimates: Parzen ker-nels and a version of Gaussian mixtures 
alled MixtureDis
riminant Analysis 2 (MDA2) [8, 9℄. Both estimatethe joint probabilities p(
;x) with a similar parametri
form, from whi
h p(
jx) are obtained by the Bayes rule.Consider a generative mixture where the pair (x; 
) isgenerated by a 
omponent 
hosen by the probabilitiesf�jgj , j = 1; : : : ; NU . The jth 
omponent generatesx from a density bj(x;�j), parametrized by �j , and 
from a multinomial distribution f�jigi, i = 1; : : : ; NC .The 
onditional estimates p̂(
jx) are then obtainedfrom the Bayes rule:p̂(
ijx) = Pj �j�jibj(x;�j)Pj �jbj(x;�j) : (9)Here bj are 
hosen to be Gaussian with a 
ommon 
o-varian
e �2I. For MDA2, the parameters �j , �j (lo
a-tions of the Gaussians), and �ji are estimated with theEM algorithm. In the Parzen kernel estimate, there isa kernel bj for ea
h data sample xj . Thus �j = xj ,�j = 1=NU , and �ji = 1 for the value of i 
orrespond-ing to the data sample 
j , and zero otherwise. It 
anbe shown that for these models, the lo
al distan
es (1)be
ome�4d2(x;x+ dx) =Ep̂(
jx) n�dxT �Ep(uj jx;
i;�j)f�jg �Ep(uj jx;�j)f�jg��2o(10)where p(uj jx;�j) is the probability that the jth mix-ture 
omponent generated the input sample given xand the parameters, and p(uj jx; 
i;�j) is the probabil-ity with the auxiliary value 
i also given.



a b 
 dFigure 1: Posterior probabilities of 
lasses 
0 and 
2 ontwo SOMs representing the same data, in theEu
lidean (a-b) and the learning metri
 (
-d).3.3 SummaryTo summarize, the 
omputation of a Self-OrganizingMap in the learning metri
 
onsists of the followingsteps:1. Build estimates of the probabilities p(
jx). Usefor example the Parzen or MDA2 estimates dis
ussedabove.2. Train the SOM by iterating the following steps: (a)Sele
t a sample x(t) and winner unit w(x(t)) by (6).For Parzen and MDA2 models, use (10) to 
omputedistan
es. (b) Adapt model ve
tors toward x(t) by (5).If (10) is used for distan
e 
al
ulation, the 
omputa-tional 
omplexity of the winner sele
tion step be
omesO(NDIMNC(NU + NSOM )), where NDIM is the di-mensionality of X, whereas for Eu
lidean distan
es itis O(NDIMNSOM ). The 
omplexity of the adaptationstep is of 
ourse un
hanged.3.4 A DemonstrationLet us demonstrate the 
hange of metri
 by 
omputingSOMs for a toy data set both in the Eu
lidean metri
(SOM-E) and in the learning metri
 (SOM-L).The primary data is evenly distributed within the unit
ube. The auxiliary data takes four values, from 
0 to
3. Their 
onditional distributions depend linearly onthe horizontal dimensions, but are indepedent of theverti
al dimension. That is, only the horizontal planeis 
onsidered important|representing the verti
al di-mension just wastes resour
es.We trained the SOM-E and SOM-L to this data andvisualized the 
onditional distribution of the auxiliarydis
rete variable on the SOMs (Fig. 1). The distri-butions are smoother on the SOM-L, and the true uni-modality of the distributions is parti
ularly well visible.By 
ontrast, the SOM-E displays give a false impres-sion of bimodality for 
2. The reason for the di�eren
ebe
omes apparent on
e we take a look at the distri-bution of the model ve
tors inside the 
ube (Fig. 2).

Figure 2: Proje
tions of the model ve
tors of the twoSOMs in Fig. 1. Left: SOM-E, right: SOM-L.The SOM-E folds to represent the entire data distri-bution, while the SOM-L represents only the relevantdimensions, as desired.4 Case Study: Bankrupt
y AnalysisIn this se
tion we apply the SOM and learning met-ri
s to bankrupt
y analysis. Bankrupt
ies are widelystudied, for they have a tangible impa
t on businesslife. Most of the quantitative studies have aimed atpredi
tion, the main approa
hes being 
lassi�
ationand probability estimation on the basis of the �nan
ialstatements given by the 
ompanies. A 
omplementaryapproa
h is the analysis of the e�e
ts of 
orporate be-haviour on the bankrupt
y risk. A qualitative workwas done by Argenti [10℄, and re
ently the SOM hasbeen applied to this problem by Kiviluoto and Bergius[11℄. Our resear
h 
omplements their work by usingthe 
ompany status (bankrupt or not) to build learn-ing metri
s for SOM training. Sin
e the metri
 de-s
ribes 
hanges in bankrupt
y risk, the SOM shouldemphasize the most interesting features of the �nan-
ial statements, i.e. those that 
ontribute lo
ally tothe bankrupt
ies.4.1 DataThe data 
onsisted of �nan
ial statements from about1500 Finnish 
ompanies. Multiple statements from dif-ferent years were treated as independent samples; of allthe 6195 statements 158 
on
erned 
ompanies whi
hlater 
ollapsed. 23 �nan
ial indi
ators were extra
tedfrom the statements, in
luding measures of growth,pro�tability and liquidity. The auxiliary variable in-di
ated whether the 
ompany went bankrupt within 3years of the statement.The data were randomly divided into an estimation setand a test set of roughly equal sizes. For the estima-tion set, the Parzen estimate and the Gaussian mixture



model (NU = 10) of the previous se
tion were used to
ompute hexagonal SOMs of 20�10 units in the learn-ing metri
s. A Eu
lidean SOM of similar size was 
om-puted for referen
e.4.2 Goodness measuresAt least the following fa
tors 
ontribute to the good-ness of a learning metri
 SOM as a des
ription of thebankrupt
y data:(1) The quality of the probability estimate. In thispaper we will not measure this, and just resort to stan-dard estimators.(2) The a

ura
y of the SOMs in representing thebankrupt
y risk. The SOM units 
an be regarded aslo
al probability estimators of their Voronoi regions byassigning to them the estimated probabilities of theauxiliary data at the point of the model ve
tors. TheSOM as an estimator 
an then be evaluated by the 
on-ditional log-likelihood of the test data, estimated at thewinner unit lo
ations:Xk log p̂(
k jmw(xk)) : (11)(3) Visualization quality, i.e., smoothness and organi-zation. Here we will resort to visual 
omparisons.4.3 ResultsThe test-set likelihoods for the probability estimatorsand the SOMs were 
omputed over a wide range ofthe parameter � that governs the smoothness of theestimates. The likelihoods of the probability estima-tors approximately indi
ate the best possible SOMperforman
e, and a \model" always predi
ting priorbankrupt
y probabilities served as a lower limit of use-ful results.The a

ura
ies of SOMs in des
ribing the test set areshown in Fig. 3. As expe
ted, the SOM-L performsbetter than the SOM-E; the results are roughly equalonly for the Parzen estimator with very small �; thenthe estimates of the 
onditional probabilities are pre-sumably very uneven, resulting in an uneven metri
.The a

ura
y di�eren
e between SOM-E and SOM-Lwas statisti
ally signi�
ant (p < 0:002; sign test forthe peaks of the a

ura
y 
urves with 10-fold 
ross-validation).Visually, the SOM-L displays were 
omparable or bet-ter than the SOM-E displays. Sample visualizationsof the data made by the SOM-L are shown in Fig. 4.There is a novel kind of a display in
luded, depi
tingthe relevan
e of a data variable at di�erent lo
ations
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Figure 3: The a

ura
y (11) of SOM-Es and SOM-Ls inrepresenting bankrupt
y risk. The p(
jx) areestimated by Gaussian kernels (top) and Gaus-sian mixtures with NU = 10 (bottom).of the map. The relevan
e rl(x) of the variable l at xis 
omputed as the 
ontribution of the variable to thedistan
e, rl(x) =s eTl J(x)elPm eTmJ(x)em ; (12)where el is the unit ve
tor parallel to the axis 
orre-sponding to the lth input variable.5 Dis
ussionIn this paper, a novel approa
h to data analysis is de-s
ribed. A relevan
e-indi
ating signal is used to guidedistan
e-based unsupervised learning methods to 
on-
entrate on relevant properties of data. Put in anotherway, we have introdu
ed a way to 
arry out \semisu-pervised" exploratory data analysis.The metri
 of the data spa
e is modi�ed to measure rel-evant 
hanges in the data. As a 
ase study, we use theresulting non-Eu
lidean metri
 in the Self-OrganizingMap algorithm. The modi�ed SOM method was ap-plied to �nan
ial statements of enterprises, and the in-di
ator of whether the 
ompany went bankrupt or notguided the analysis. The resulting SOM then des
ribes



a b 
 dFigure 4: SOM-L displays of the bankrupt
y data. a Pos-terior bankrupt
y probability, b empiri
al ratioof healthy to bankrupt 
ompanies, 
 distribu-tion and d relevan
e of a pro�tability indi
a-tor. The hexagons 
orrespond to SOM unitsand light shades denote high values.only su
h variation of the �nan
ial statements that 
or-relates with the bankrupt
y sensitivity of the 
ompa-nies. The results were satisfa
tory both qualitativelyand quantitatively in that the 
ompanies that laterwent bankrupt be
ame better separated on the learningmetri
 SOM, and the fa
tors a�e
ting the bankrupt
ywere well presented.The goodness of the method depends on the estimatorused to approximate the relevan
e-indi
ating signal orauxiliary data. We will later investigate the proper
hoi
e of the estimator in more detail.The method des
ribed in this paper is a produ
t ofa larger resear
h proje
t where the aim is to developlearning metri
 methods for exploratory data analysis.So far we have developed a related 
lustering methodand applied it to gene expression data [12℄ and text do
-uments [13℄. More details of the bankrupt
y predi
tionappli
ation des
ribed in this paper are available in [3℄.A
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