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Comparison of visualization methods for an atlas of gene

expression data sets

Abstract

This paper has two intertwined goals: (i) to study the feasibility of an

atlas of gene expression data sets as a visual interface to expression data-

banks, and (ii) to study which dimensionality reduction methods would

be suitable for visualizing very high-dimensional data sets. Several new

methods have been recently proposed for the estimation of data mani-

folds or embeddings, but they have so far not been compared in the task

of visualization. In visualizations the dimensionality is constrained, in ad-

dition to the data itself, by the presentation medium. It turns out that an

older method, curvilinear components analysis, outperforms the new ones

in terms of trustworthiness of the projections. In a sample databank on

gene expression, the main sources of variation were the differences between

data sets, different labs, and different measurement methods. This hints

at a need for better methods for making the data sets commensurable,

in accordance with earlier studies. The good news is that the visualized

overview, expression atlas, reveals many of these subsets. Hence, we con-

clude that dimensionality reduction even from 1339 to 2 can produce a

useful interface to gene expression databanks.

Keywords

Gene expression, manifold extraction, nonlinear dimensionality reduction, visu-

alization
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1 Introduction

The next challenge following the invention of high-throughput microarray tech-

niques for genome-wide expression and other measurements, and collecting the

measurement data into community-resource databanks, is in creating methods

for searching and browsing the data. In this paper we study a technical sub-

problem of this very general task which benefits from information visualization.

While the problem is motivated by visualization of gene expression data, the

methods are more generally applicable to other high-dimensional data as well.

Assume a user searching for a gene expression data set or sets. Typical

examples are modelers searching for data needed for estimating their models, or

experimental biologists searching for relevant data to compare with their own

findings. In analogy to textual information retrieval, the user needs tools for

two different kinds of tasks: (i) Searching for a specific data set. This task is

analogous to (textual) information retrieval, and feasible if the user knows the

relevant search terms or keywords. A relevant “keyword” for a data set search

could be a sample data set, when the task is to find the most similar existing

sets. (ii) Browse the databanks to find interesting or potentially relevant data

sets. This is analogous to text mining and browsing using visual interfaces.

The goal of the user is tacit, and hence suitable search “terms” are either not

known or insufficient. The best an automated system can do is to help the

user in browsing the databank. Visualizations can be of help here. It is also

possible to combine visual exploration with a query interface. The results of

the query are shown dynamically on the visualization. This way the user can

use the metadata in the database to direct the exploration to specific domains

of interest.

The first big problem in visualizing gene expression data sets stems from their

dimensionality, which may be thousands or even tens of thousands, equaling the

number of genes on a microarray. Traditional dimensionality reduction methods

include the linear principal components analysis (PCA) [1] which tries to pre-
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serve variance in the data, and multidimensional scaling (MDS) which tries to

preserve pairwise distances between data points. There exist lots of variants of

MDS for different types of distances, and for emphasizing preservation of differ-

ent properties in them [2]. We have earlier [3] compared these methods together

with hierarchical clustering and the Self-Organizing Map (SOM) [4], a neurally-

inspired dimensionality reduction method, for a related task: visualization of

similarity relationships between genes, based on their expression profiles in a set

of treatments. The result of the comparison was that the SOM-visualizations

were more trustworthy, in the sense that a set of genes found close-by each

other on a SOM display was more likely to be similar in terms of the original

data as well. In other words, the proximities visible on the displays were more

trustworthy. The other side of the coin is whether the visualization is able to

show all of the proximities present in the original data. It turned out that the

SOM was among the best methods here as well. There is later evidence [5] that

a related method, curvilinear components analysis (CCA) [6], may outperform

the SOM in this task.

There has recently been a surge of interest in methods for finding latent

lower-dimensional manifolds of data, or nonlinear embeddings of low-dimensional

data manifolds in a higher-dimensional data space. Most of the new methods

have been described in Section 2. Although it is sometimes implied that these

methods might be suitable for visualizing the manifold as well, we are not aware

of any benchmarking studies. The key difference between manifold estimation

and visualization is that a visualization can be only two- or at most three-

dimensional. In this work we will study what happens to the results of the

manifold estimation methods when the end dimensionality is fixed to two for

visualization purposes, and compare them with the method found to be the best

in the earlier studies (CCA).

Another main problem in visualizing gene expression data sets, and in fact in

all comparisons of the sets, is how to make them commensurable. The measure-

ment results depend on experimental and measurement procedures, the specifics
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of the organism and its biological state, biological sampling, measurement de-

vices, and normalization and postprocessing procedures. Although the prob-

lem seems hopeless, even very simple normalization procedures have resulted in

promising data analysis results in a recent study which combined data from a

variety of human cancer studies [7]. This prompted us to study the feasibility

of a gene expression data atlas, where only very simple procedures have been

applied to make the sets commensurable.

2 Methods

In this section we describe briefly the main classical methods for visualizing

similarity relationships in data, and the recent ones that focus on finding data

manifolds or embeddings. Lastly, we describe the measures for the goodness

of visualizations we will use in the experiments. Many of the visualization

methods rely on theoretical ideas which are hard to describe briefly in an in-

tuitively appealing manner; we will complement the presentation in Section 3

with demonstrations on toy data sets selected to highlight differences in the

performance of the methods.

All methods we will discuss take the original data, which can be considered

as points in a high-dimensional data space, and represent each point as a point

in a lower-dimensional space. The input data will be denoted by the vectors xi,

indexed by i, and their low-dimensional representations by yi. For visualization

purposes the dimensionality of the output space needs to be two or at most three,

whereas the original or input space may have thousands of dimensions. The task

of a visualization method is to construct the representations yi in such a way

that essential properties of the similarity relationships of the xi are preserved;

it is clear that lower-dimensional representations cannot in general preserve

everything of a higher-dimensional data set, and all methods need to make a

compromise on what to preserve. Computation of the representation yi of xi

is often called projection; when the projection is linear it can be expressed as a
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matrix product (see Principal component analysis below), and the visualization

task is to find a good matrix. Alternatively, the representations yi can be

optimized directly (see Multidimensional scaling below) which implicitly defines

a “nonlinear projection.”

The traditional way of visualizing multidimensional data is to project the

data to the plane spanned by two of the axes of the data space at a time. This

representation has two drawbacks, however. First, as the number of dimensions

grows the number of scatter plots increases rapidly, and there is no way of a

priori knowing which plots are the most relevant ones. The second problem is

that linear projections to the original axes might not bring out the interesting

possibly nonlinear relationships in the data. To solve these two problems more

sophisticated visualization methods have been developed.

2.1 Principal component analysis (PCA)

The goal of PCA [1] is to find directions, or components, where the data has

maximal variance. When data is projected to a PCA component the variance

in the data is preserved maximally. Technically, the components can be found

by solving the eigenvalue problem

Cxa = λa , (1)

where Cx is the covariance matrix of the vectorial data x. Here a is an eigen-

vector and λ the corresponding eigenvalue. The problem has several solutions,

of which the ones with the largest λ are the most interesting in PCA. For vi-

sualization the data points need to be projected onto a two-dimensional plane

defined by the two main components. This is done by

yi = Axi, (2)

6



where A is the matrix containing the eigenvectors corresponding to the two

largest eigenvalues, and yi is the two-dimensional representation of xi. In effect,

this produces an image where the data is spread as widely as is possible by using

a linear projection.

2.2 Multidimensional scaling (MDS)

Traditional multidimensional scaling is not included among the methods that

we test in this paper, but a short description helps to explain the more complex

methods below.

There are several different variants of MDS [2], but they all have a common

goal: to find a configuration of points in space that preserves the pairwise

distance matrix as well as possible. The simplest version is the linear MDS

[8, 9], also called classical scaling. The solution to linear MDS can found by

solving an eigenvalue problem, in fact, linear MDS is very closely related to PCA.

It can be shown [9] that when the dimensionality of the sought solutions is the

same and the distance measure is Euclidean, the projection of the original data

to the PCA subspace equals the configuration of points found by linear MDS.

This results implies the interpretation that PCA tries to preserve the squared

distances between data points, and linear MDS finds a solution that is a linear

projection of the original data.

A slightly more complex version is metric MDS. Its cost function is

E =
∑

ij

(di,j − d(yi,yj))
2, (3)

where di,j is the distance between points i and j in the input space (entry

in the distance matrix) and d(yi,yj) the distance in the output space of the

selected dimensionality, between the representations yi and yj of the points.

The representations are simply the coordinates of the points in the output space.

The cost function is typically optimized using iterative methods. In this case

the resulting configuration of points is not the result of a linear transformation
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of the data but a result of a nonlinear transformation defined implicitly by the

optimized configuration. Thus it is usually better able to preserve the distances

than a purely linear method would be.

Most versions of MDS use some variant of this cost function. For instance,

Sammon’s mapping [10] gives small distances a larger weight. Non-metric MDS

[11] on the other hand, allows distances to be modified by any monotonic func-

tion. There exists a huge number of different variants, all sharing the task of

preserving pairwise distances, in one way or the other.

2.3 Isomap

The Isomap [15] is a variant of MDS. It too finds a configuration of points that

matches the given distance matrix. The difference from traditional MDS is in

how the distances in the input space are defined. Isomap uses geodesic dis-

tances along the manifold the data forms, instead of direct pairwise Euclidean

distances. When the MDS algorithm then reproduces the geodesic distances

with the pairwise Euclidean distances in the output space, the manifold struc-

ture in the original data becomes unfolded. This can be illustrated with the

following example. Take a string and tie knots in it to represent the data

points. Then set it on a table top, say, in the form of the letter S. This string

is the manifold (here one-dimensional) and it has been embedded to the two-

dimensional space of the table top. Next measure all the pairwise distances

between the knots along the string. The task of the visualization is to represent

these distances with normal Euclidean distances in the output space, that is,

only straight lines between representations of the knots. This can only be done

by pulling the string straight. Thus the S shaped manifold, the string, was

unfolded by representing the geodesic distances with Euclidean distances.

Technically, the geodesic distances are approximated with the shortest path

distances calculated along the k-nearest-neighbor graph formed of the data.

Each data point is a vertex in the graph. There is an edge between points i and

j if j is among the k nearest neighbors of i or i among the k nearest neighbors
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of j. The weight of each edge is the Euclidean distance between the two points.

The actual embedding of points is found by standard linear MDS, applied to

the shortest-path distance matrix. It has been shown [16] that this algorithm

is asymptotically able to recover certain types of manifolds.

The Isomap implementation available at http://isomap.stanford.edu/ was

used in the experiments.

2.4 Curvilinear component analysis (CCA)

Like Isomap, CCA [6] has similarities with MDS. Where Isomap changes the

definition of distances, CCA chooses to look for a configuration of points that

preserves only a subset of the distances. The starting point is a random initial-

ization of points (yi) in the reduced-dimensional output space, and a pairwise

distance matrix between the original data points (xi). The cost function mea-

sures preservation of the original pairwise Euclidean distances, but now weighted

by a coefficient F that depends on the distance between the points in the output

space. Here CCA differs from traditional MDS methods. The idea is to con-

centrate on preserving distances between points that are near each other in the

visualization. The cost function is

E =
1

2

∑

i

∑

j 6=i

(d(xi,xj) − d(yi,yj))
2F (d(yi,yj), λy). (4)

The term F (d(yi,yj), λy) determines how strongly errors in reproducing the

distance between the points i and j contribute to the cost function. It is usually

defined as an area of influence around a data point in the output space:

F (d(yi,yj), λy) =











1 if d(yi,yj) ≤ λy

0 if d(yi,yj) > λy.
(5)

The cost function is optimized using a kind of a stochastic gradient descent

algorithm. In the beginning of optimization the radius of the area of influence,

λy, is kept large enough to cover all or at least most of the data points. During
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the optimization it is slowly reduced to zero. Thus at initial stages CCA works

exactly as standard metric MDS where all distances are treated equally. The

dynamic reduction of the area of influence around data points during the op-

timization results in an unfolding effect similar to the one in the Isomap. The

differences of the methods will be demonstrated in Section 3.

Contrary to the other methods applied in this paper, the cost function of

CCA can have several local optima. Although this can potentially cause prob-

lems, the solutions found by CCA have been quite good in practice, even starting

from only one initialization.

2.5 Locally linear embedding (LLE)

The LLE algorithm [12] is based on the assumption that the data lies on or close

to a low-dimensional manifold in the high-dimensional space. If this is the case

then we can make a locally linear approximation of the manifold, and assume

that a point and its neighbors lie in a locally linear subspace on the manifold.

The geometry of this subspace can be estimated by calculating the linear coef-

ficients that reconstruct each data point from its k nearest neighbors. In effect

the k nearest neighbors define a (possibly over-complete) basis and the position

of the data point is given as coordinates (coefficients) in this basis. If the data

lies in a low-dimensional linear subspace of the high dimensional input space

then all these local coordinate systems are inherently aligned and a simple linear

transformation of the data can be used to find a low dimensional representation

that exactly reproduces the local coordinates of each data point. In the case of

a nonlinear manifold the local coordinate systems are inherently incompatible,

and a cost function has to be defined to optimize the representation.

The LLE algorithm works in two phases. First the local “coordinates” are

calculated; a coordinate system represents a point, here xi, as a linear com-

bination of “basis vectors”, here the neighbors of xi. In the first stage the

coordinates Wij are optimized to best represent xi. The total reconstruction
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error to be optimized is

E(W) =
∑

i

|xi −
∑

j

Wijxj |
2. (6)

To find the optimal weight matrix W the reconstruction error is minimized sub-

ject to the constraints that Wij = 0 if i and j are not neighbors, and
∑

j Wij = 1.

In the second stage the task is to find such low-dimensional representations

yi that the local coordinate systems are kept as compatible as possible. Now

the representation error is

E(Y) =
∑

i

|yi −
∑

j

Wijyj |
2 . (7)

This time the coordinates Wij are kept constant at the values produced by stage

one, and the positions of the data points yi are changed. This optimization can

be solve by an eigenvalue analysis (details in [12]).

The LLE implementation at http://www.cs.toronto.edu/∼roweis/lle/ was

used in the experiments.

2.6 Laplacian eigenmap

The Laplacian eigenmap [13] algorithm is related to the LLE algorithm but mo-

tivated graph-theoretically. The algorithm is the hardest to describe intuitively,

and we have to resort to a brief and more formal description here.

The first step is to form the k-nearest-neighbor graph as in the Isomap

algorithm, but here often the edges are simply assigned a weight Wij = 1 if the

points i and j are neighbors, and zero otherwise. This has been found to work

well in practice [14].

The neighborhood graph defines the similarity structure that we would like

to see in the visualization. Laplacian eigenmap tries to represent this structure
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by optimizing the cost function

1

2

∑

i,j

‖yi − yj‖
2Wij = tr(YT LY), (8)

where L = D − W, D is the diagonal matrix with elements Dii =
∑

j Wij ,

and Y is the matrix holding the coordinates of all data points. Minimizing the

cost function tries to put points that are connected in the graph as close by

as possible. There is a trivial solution to the cost function. That is to put all

the representations in a single location. This can be prevented by adding the

constraint YT DY = I.

In practice the configuration of points in the two-dimensional visualization

can be found by solving the generalized eigenvalue problem

Ly = λDy. (9)

The embedding of the data points is given by the eigenvectors having the 2

smallest eigenvalues, after discarding the smallest (always zero) eigenvalue. The

zero eigenvalue corresponds to the case where all points are represented by a

single location.

According to [18] the Laplacian eigenmap can also be seen as a variant of

linear MDS that tries to preserve the expected commute time distance matrix.

Commute time distance is defined to be the expected time a Markov chain

random walker takes when traveling from one vertex of the neighborhood graph

to another and back. The expectation is taken over all possible paths.

2.7 Measuring trustworthiness of a visualization

When visualizing similarities of data points, the local similarities are the most

salient: when looking at a point the first perceptions are which other points are

proximate, and which close-by points form groups. We have developed a way

to measure how trustworthy the proximities presented by the visualization are
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[3, 17].

We consider a projection onto a display trustworthy if the set of k closest

neighbors of a point on the display is also close-by in the original space. The

setting is illustrated in Figure 1. The measure is very closely related to the

precision measure in information retrieval, where the task is to find a set of

documents that are relevant to a query. We can consider the neighborhood

in the input space as the set of relevant items and the neighborhood in the

visualization as the result of the query. If we calculate the proportion of points

that are in the neighborhood in the visualization but not in the input space we

get a number that quantifies the loss of precision; in fact the standard measure

of precision equals one minus this number. The pure number of errors is not

very informative, however, and we have selected to quantify the magnitude of

the error by ranking the data points based on their distance instead of just

counting the number of errors. In information retrieval this would be analogous

to ordering each item in the data base according to their non-binary relevance

to the query. Now to have perfect precision, the set of retrieved items (the

neighbors in the visualization) should contain those points that have a rank

≤ k. Those points that are in the retrieved set but have a rank > k cause the

precision to fall and we define the amount of the error to increase proportionally

to the increase in the rank, that is, r − k, for a point with rank r. To get the

trustworthiness for the whole visualization this is summed over all data points.

More formally, let N be the number of data samples and r(i, j) be the rank

of the sample j in the ordering according to the distance from i in the original

data space. Denote by Uk(i) the set of those data samples that are in the

neighborhood of the sample i in the visualization display but not in the original

data space. Our measure of trustworthiness of the visualization, M1, is defined

by

M1(k) = 1 − A(k)

N
∑

i=1

∑

j∈Uk(i)

(r(i, j) − k) , (10)
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where A(k) = 2/(Nk(2N−3k−1)) scales the values between zero and one. The

worst attainable values of M1 may, at least in principle, vary with k, and will

be approximated in our experiments with random projections and with random

neighborhoods.

While the trustworthiness measure shows how well the points in a neigh-

borhood on the display match the neighborhood in the original space, it is also

of interest to know whether neighbors in the original space remain neighbors.

If points become pushed out of the neighborhood in the visualization process,

discontinuities arise in the projection. As a result of the latter kinds of errors,

not all proximities existing in the original data are visible in the visualization.

As in the case with trustworthiness an analogy can be done with information

retrieval, but in this case continuity is connected to the recall measure.

The errors caused by discontinuities may be quantified analogously to the

errors in trustworthiness. Let Vk(i) be the set of those samples that are in the

neighborhood of the data sample i in the original space but not in the visualiza-

tion, and let r̂(i, j) be the rank of the data sample j in the ordering according

to the distance from i on the display. The effects of discontinuities of the pro-

jection are quantified by how well the continuity of the original neighborhoods

are preserved, measured by

M2(k) = 1 − A(k)
N

∑

i=1

∑

j∈Vk(i)

(r̂(i, j) − k) . (11)

In case of ties in rank ordering, all compatible rank orders are assumed

equally likely, and averages of the error measures are computed. This is very

rare, however.

In practice we usually study the trustworthiness and continuity measures

with a range of values of k; small k are more important for the quality of visual-

ization but a very rapid drop of trustworthiness for slightly larger neighborhoods

would result in a bad visualization. Note that the k in the measures 10 and

11, and the k in th k-neighbor graphs of many of the visualization methods are
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different symbols with no direct connection.

3 Comparisons of the methods on toy data sets

Although the cost function of a visualization method describes exactly what the

method tries to do, it is often very hard to understand, based on the abstract

definition, how the method behaves in practice. This is especially true for the

nonlinear methods. Because of this we start by testing the methods on data

sets which are simple, representative of the kinds of data the methods need to

handle (manifolds, clusters), and for which we at least approximatively know

what a good result would be like. The purpose of these experiments is to try to

understand the behavior and limitations of the different methods in situations

that are likely to appear when visualizing real-world data. Three groups of data

sets are studied. In the first group there are three sets that are designed to test

how well the methods find a simple nonlinear manifold in the data, and what

happens when the manifold gets higher-dimensional than the visualization. This

is a task many of the methods were developed for. The second group consist

of two data sets that test what happens when the topology of the manifold

is spherical instead of flat. This can be the case, for example, when viewing

an object from several angles, or when the lengths of centered data vectors are

normalized to be equal as is common for bioinformatics data. In the third group

there is only one data set that contains clusters instead of a single nice manifold.

All data sets are three-dimensional and contain 1000 data points.

3.1 Data sets

S-curve. Three of the data sets contain a two-dimensional S-shaped curve.

The first (Figure 2a) can be thought of as a paper strip bended to an S-shape.

The data are uniformly distributed on the two-dimensional manifold. In the

second and third data sets in Figures 2b and 2c, respectively, the manifold has

a non-zero thickness. The data was constructed by adding a spherical normally
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distributed displacement to each point. In the second data set the standard

deviation was 0.3 and in the third it was 0.6.

The purpose of these three data sets is to investigate how well the methods

recover the manifold and what happens as the thickness of the manifold, and

hence its dimensionality, increases. The S-curve with zero thickness can safely

be assumed to be a two-dimensional manifold, but the curve with moderate

thickness already raises some doubt, and the thickest “curve” is clearly three-

dimensional. For the local proximity relationships to be trustworthy the two-

dimensional projection should “fold” inside the thicker manifold instead of just

pressing it flat.

Sphere. Two of the data sets contain a sphere in a three-dimensional space.

In the first set (Figure 2d) the data lie on the surface of a unit sphere. In the

second set (Figure 2e) the spherical shell has a thickness of one, symmetrically

around the unit sphere. (In practice the data was formed by perturbing samples

in the radial direction from the unit sphere, and hence the density within the

sphere is not uniform.)

A spherical data set is very hard for many types of projection methods. A

typical result is that the sphere becomes squashed flat so that the opposing sides

get pressed together. A good solution in terms of the trustworthiness would be

to cut the sphere open and spread it in a manner similar to printed maps of the

Earth.

Cluster. In this set the data (Figure 2f) are distributed in six clusters placed

in a symmetric configuration. Five of the clusters are normally distributed and

one is a S-curved manifold.

Several of the tested methods have been noted to have problems with clus-

tered data. Yet, in an explorative visualization task any clusters and their

structure are usually of great interest. We included the cluster data set to

benchmark the methods on this very different visualization task, and to find

out whether they can find the manifold structure in one of the clusters.
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3.2 Results

The methods having parameters were run for a range of parameter values, and

the best result in terms of trustworthiness was selected. This was done for all

data sets.

The methods having a number of neighbors parameter (for the nearest neigh-

bors graph) were run several times with values of k going from 4 to 20. On the

cluster data set the methods were additionally run with k ranging from 64 to 80.

The neighborhood graph becomes connected only for k ≥ 64 in this data set.

CCA was run ten times on each data set with different randomly chosen initial

conditions. In each case the result with the best trustworthiness was selected.

The methods were compared using the trustworthiness and continuity mea-

sures (Figures 4 and 5) and qualitatively by looking at the visualizations pro-

duced by the methods (samples in Figure 6). The results are summarized in

Figure 3 and a more thorough description of the findings for each method is

given below.

PCA. The trustworthiness of PCA projections was never among the best on

the data sets tested (Figures 4 and 5). An interesting finding is that, on the

average, PCA is worse than a random projection on the cluster data set. On

this data set the PCA projects two clusters on top of each other while a random

projection usually manages to separate them.

In contrast, PCA is among the best in preserving the original neighborhoods.

It never projects two near-by points far from each other. PCA produces easily

interpretable visualizations, but they are mainly capable of reproducing the

global structure instead of the local proximity relationships.

LLE performs well on the S-curve (Figures 4 and 6a), although its perfor-

mance starts to detoriate as the thickness of the manifold increases. On this

data set the performances of LLE and Isomap are similar. On the cluster data

set the LLE-visualization consists of a small set of isolated points (for k < 64),
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and it is not possible to perceive any structure inside the clusters. When k is

large enough, implying that the neighborhood graph becomes connected, LLE is

able to separate the S-manifold from the other clusters, but it becomes stretched

to a one-dimensional straight line. The number of neighbors is then clearly too

large, and hence the projection is qualitatively poor even tough the trustwor-

thiness is better than with a PCA projection.

In summary, LLE seems sensitive to the choice of the parameter that selects

the number of neighbors.

Laplacian eigenmap. The trustworthiness of projections created by the Lapla-

cian eigenmap is the second best on all data sets except the S-curve sets (Figures

4 and 5). For those sets it is among the two worst methods in preserving the

original neighborhoods as well. For the S-curve with zero thickness the Lapla-

cian eigenmap collapses the two-dimensional manifold to a very narrow curve

(Figure 6b).

On the cluster data set the Laplacian eigenmap performs as badly as the LLE

when the number of neighbors is not large enough to form a connected neighbor

graph. The resulting visualization consists of a small set of points, their num-

ber equaling the number of connected components in the neighborhood graph.

When the number of neighbors is large enough the Laplacian eigenmap produces

a fairly trustworthy projection (Figure 5c). The projection is problematic qual-

itatively, however (Figure 6c). It consist of mostly small groups that do not

seem to have any structure when studied visually. Actually the small clusters

in the display do contain structure, but the scale differences are too large to

visualize them in one image.

As was mentioned in section 2.6 the Laplacian eigenmap can be seen as a

method that tries to represent the commute time distance matrix of the neigh-

borhood graph with Euclidean distances. This leads to a tendency to magnify

pairwise distances. The less likely a short path between two points is going to

be on a random walk the larger the magnification of the pairwise distance is.
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This distance magnification results in several kinds of distortions in the

visualization. Two cases are common. First, as happened with the cluster

data above, the scaling of distances within clusters can get very small compared

to distances between clusters.

The second kind of common distortion is that “holes” emerge in the visu-

alizations, as illustrated with the sphere data in Figure 6d. (The image is an

Isomap projection, but the holes are similar to what Laplacian eigenmap pro-

duces). If the number of neighbors used to form the neighborhood graph is

small, due to random fluctuations some proximate points will not be connected

in the graph and the travel time along the shortest path is longer than the real

distance on the manifold would indicate. The expectation taken on the travel

time magnifies this effect even more, unless the shortest path is the only one

that can be taken.

Isomap. The trustworthiness of Isomap projections is slightly worse than of

Laplacian eigenmap on all but the S-curve data sets (Figures 4 and 5), on which

the Laplacian eigenmap has problems. On the S-curve with zero thickness the

Isomap and CCA were the only methods that managed to recover the neigh-

borhoods almost perfectly. The Isomap seems to favor continuity relative to

trustworthiness. Qualitatively Isomap projections are better than those pro-

duced by Laplacian eigenmap and LLE (it produces less distortions of the kinds

shown in Figure 6).

When the number of neighbors parameter k is selected to be small Isomap

has a tendency to create holes in the projection (see Figure 6d) like the Laplacian

eigenmap discussed above. The effect is not as strong as in Laplacian eigenmap

because Isomap does not take expectations over all paths but always uses the

shortest one.

On the thickest S-curve Isomap produces an image that looks very similar

to the one produced by PCA. This is expected as the shortest path distances

start to approach the Euclidean distances as the data gets closer to a three-
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dimensional data cloud instead of a two-dimensional manifold.

CCA. Figures 4 and 5 show that CCA is consistently the best method in

terms of trustworthiness. The same does not hold for the preservation of orig-

inal neighborhoods, but we should note that all methods, including random

projection, are almost perfect for these simple data sets in this respect. In gen-

eral, CCA gains its high trustworthiness by “cutting the data open.” If the

manifold is thin this results in a nice unfolding. If the manifold is thicker the

cutting is more forceful. An example of such cutting can be seen in Figure 6e

where the thick S-curve is unfolded. Some neighborhoods have been split so

that they appear in two separate locations in the projection (visible as separate

patches having similar color), but most of the local neighborhood relationships

are still preserved. Another example of cutting is presented in Figure 6f where

the sphere has been split in two parts that are connected on one side. This

cutting results in gains in trustworthiness and reductions in continuity.

A disadvantage of CCA is that sometimes data points “get dropped off”

from the optimization as the area of influence is decreased. As the area of

influence decreases it is possible that a data point or a group of points is no

longer connected to any other points in the data, because their distance from

other data points is larger than the area of influence. An example of this can

be seen in Figure 6f. There are three small groups of points far away from most

of the other data points.

4 A gene expression atlas

We applied the methods to constructing an atlas of gene expression data sets,

aimed at revealing proximity relationships between and within the data sets.

The atlas is computed of a collection of cancer expression sets which have been

preprocessed only lightly, to make them somewhat more commensurable. This

case study serves both as a test bench for comparing the different visualization

methods, and as a feasibility study on whether the current simple preprocessing
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methods are sufficient for this task.

4.1 Data and preprocessing

We used the large collection of human gene expression arrays collected by

Segal et al. [7]. (The normalized expression compendium is available from

http://dags.stanford.edu/cancer.) The compendium consists of 26 different sets,

each from a different publication. Altogether the data covers 1973 arrays and

14143 genes. Three different types of microarrays were included, and the studies

were carried out in 6 different institutions.

The data sets were normalized using the same methods as in [7]. In the

expression values measured with Affymetrix chips, logs (base 2) were taken

(setting to 10 expression values that were < 10). For the data sets generated

using cDNA chips the log-ratio (base 2) of the measured and control sample was

taken. After this the expression values of data sets were normalized, for each

gene and data set separately, by subtracting the mean of the gene’s expression

in the data set from each expression value. Finally the values were rounded to

the accuracy of one decimal.

There are lots of values missing from the data set. Several strategies have

been suggested on how they could be handled, and for best results the approach

should be selected for each visualization method separately. As our goal was to

study the visualization performance of the different methods and not to asses the

quality of different approaches to handling missing values, we chose to simply

remove samples with missing values for this study. First we removed genes that

were missing from more than 300 arrays. Then we removed the arrays that still

contained missing values. This resulted in a data set containing 1278 arrays and

1339 genes.

4.2 Comparison of visualization methods

Visualization of the compendium of gene expression data sets is a very demand-

ing task for any method. The dimensionality needs to be reduced from 1339
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to 2 while still preserving local structure of the data. To make the task even

harder the data in the compendium has been produced with different meth-

ods and comes from different types of experiments. All this means that it is

very unlikely that there is a nicely-formed low-dimensional manifold in the data

space.

We compared the visualization methods using the same procedures as in

Section 3. Methods having a nearest neighbor parameter were run with the

parameter ranging from k = 4 to k = 20, CCA was run ten times from different

random initializations, and the best ones in terms of the trustworthiness were

selected.

The performance of the methods can be seen in Figure 7a. None of the visu-

alizations has a particularly high trustworthiness. This reflects the difficulty of

the task. CCA was the best, followed by Laplacian eigenmap and PCA. All of

the methods were somewhat better in preserving original neighborhoods (conti-

nuity). PCA was the best in this respect, followed by Laplacian eigenmap. LLE

performed poorly on both measures. That PCA performs so well, in conjuction

with the overall low trustworthiness values, suggests that there is very little

low-dimensional manifold structure that could be utilized in the data.

To verify the results on a slightly easier data set, we additionally visualized

a collection of gene expression profiles measured from different mouse tissues.

The data contained 1600 genes and 45 tissues, and we sought to visualize the

similarities of the genes. For details of the data set and of preprocessing see

[3]. The results are shown in Figure 7b. CCA is the best method in terms of

trustworthiness, followed by Laplacian eigenmap and Isomap. LLE and PCA

are clearly worse in this respect. Laplacian eigenmap and Isomap are the best

methods in preserving the original neighborhoods. Qualitatively the visualiza-

tions produced by PCA, CCA, and Isomap are the best. Overall the results

are similar to those found on the toy data sets, which verifies that the insights

gained from the toy data sets can be extended to real-world data.
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4.3 Searching for coherent groups in the data

In a cancer expression atlas we would expect the samples from a given cancer

type to form a coherent region that is separable from the other cancer types,

and we will use this separability to measure the quality of the atlases. Such

separability measures both the quality of the data and the quality of the visu-

alization, and that is why we will first measure the coherence of the groups in

the original data space, to be used as a yardstick. Then we use this yardstick

to measure coherence of the groups in the visualization.

In addition to cancer groups, we will measure coherence of data from the

same measurement platform and coming from the same institution. It is ex-

pected that they could form relatively homogeneous sets as well. The relative

salience of the different groupings, which is an indication of how much of the

variation in the data they explain, will be evaluated in the next section.

We want to define coherence in a flexible way. A coherent group need neither

be a cluster that is clearly separate from the other data, nor even a unimodal

region. A flexible measure is separability from the other data. We measure

coherence by the classification error of samples of the group, when the other

class consists of all the other data (details below).

It is encouraging that many cancer types form coherent groups (first column

in Table 1). A less encouraging finding is that cDNA arrays form a very coherent

group as well, even though they cover arrays from several different cancer types.

This is probably an indication of the fact that the preprocessing done on the

arrays was not able to remove the differences between the platforms. This result

is additionally related to the finding that arrays from the Stanford University

form a very coherent group as well. Namely, most of the studies using cDNAs

were done in Stanford.

How the classification was done. To measure how coherent a group X

is, we constructed a simple non-parametric classifier to evaluate whether each

sample of X is better classified to its own group or to the random group, sampled
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without replacement from the rest of the data. If the great majority becomes

classified to X, then the group is coherent, otherwise not.

Technically, we used a k-nearest-neighbor classifier (k = 5). A random data

set of the same size as X is selected (same size to give both groups the same prior

probability), and used as reference points of the other class. Each data point in

X is then classified by finding the k nearest neighbors from the combined set of

the randomly picked samples and X, with the sample to be classified left out.

The majority class within the k closest samples wins.

The classification was repeated 1000 times with different random groups. At

the end the mean classification rate of the group was calculated and reported.

We additionally computed P-values for rejecting the hypothesis that the groups

come from the same distribution, but the results were almost always highly

significant and we decided to report the more informative mean classification

rates.

Visualizations preserve coherent attribute groups. For the gene expres-

sion atlas to be the most useful, it should be able to preserve most of the coherent

groups in the data. To test this we carried out the same tests as above, but

this time with the projected samples within the two-dimensional display. We

did this for two different methods: CCA which had the highest trustworthiness,

and with PCA which was the best in preserving the original neighborhoods.

The results are presented in the second and third columns of Table 1. It should

be noted that the visualization methods did not utilize any information about

the groupings; they were completely unsupervised.

Both methods preserve most of the groups having high coherence (boldface

in the table; defined as having the average classification accuracy above the

arbitrary threshold of 90%). CCA preserves six of the nine groups and PCA

four. An interesting point is that CCA in fact increased the classification rate

on the average. Especially several cancer types became more coherent than they

were in the original data. Examples of this kind are groups of breast cancer,
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various tumors, and NCI60. At the same time, the coherence of the cDNA

platform was lowered. The changes caused by PCA tend to cancel each other

on the average. Overall there is a tendency for groups that are very coherent in

the original data to become slightly less coherent in the visualization and vice

versa.

4.4 Are data from different platforms commensurable?

In the previous section it was noted that cDNA measurements formed a very

coherent group. This suggests that a large portion of the variation in the data

might actually stem from secondary attributes such as the expression platform

and institute, rather than cancer.

This would naturally reduce the usefulness of the atlas. If a user is studying,

say, B lymphoma and searches for relevant data, it would be nice to be able to

find and use data from all platforms (and all institutions). This is of course

sensible only if the variation due to the platform is relatively small.

We tested this by measuring whether data from a cancer type is more com-

mensurable with data of the same cancer type, but measured on a different

platform, than with any data measured from the same platform. For instance,

to see whether the B lymphoma arrays in the gene expression compendium were

really organized based on the cancer type and not the platform, we selected a

set of arrays that were both cDNA and measured from B lymphoma samples.

We then measured whether this set was better classified to either the class of

B lymphoma arrays or the class of cDNA arrays. Details of the classification

procedure are given in the previous section. The result was that cDNA measure-

ments of B lymphoma samples were always closer to other cDNA measurements,

and B lymphoma samples measured with other platforms were more different.

We performed the same experiment on several cancer type vs platform or

institute pairs. The complete results are in Table 2.

The results are quite clear concerning the cDNA platform. The cDNA mea-

surements are always closer to other cDNA measurements than to measurements
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of the same cancer type but made with a different platform. A similar effect,

although not as strong, can be found for the Hu95 platform. On HuGeneFL the

results vary.

These results strongly suggest that the simple preprocessing used in [7] is

not able to remove effects caused by the platform. Note that this does not

necessarily imply anything about the validity of the results in [7]; they have

different goals and methods. The visualizations seem to indicate that there

might be a difference already in the scales between the data vectors from differ-

ent platforms. Affymetrix data points seem to be spread out more widely than

cDNA-produced points.

A similar effect can be found between the cancer types and the institute

where the data was measured. This can, however, to a large extent be explained

by the fact that most institutes prefer a specific platform.

Visualizations preserve the general organization of data. We wanted

to check whether same findings apply to the visualizations as well, and carried

out the same study on the visualized data (Tables 3 and 4). As in the previous

section, the visualization was done both using CCA and PCA.

The conclusions on cDNA arrays were the same as with the original data

above, although not quite as strong. On Affymetrix the results changed, how-

ever. In most cases the strength of the cancer type was increased, for example,

in the measurements of Leukemia samples with Hu95. Hu95 is a better classifier

than Leukemia in the original data, but the result is reversed in the visualiza-

tions. In three cases the classification strength of the cancer class was reduced.

The changes can be at least partly explained by changes in how coherent

the groups are (see Table 1). For example, the classification rate of Hu95 was

reduced in the visualization, and the Leukemia samples became more coherent.

Overall the visualization process seems to have a positive effect. On the

average the cancer classes became stronger for both of the visualization methods.
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4.5 Visualizing the gene expression compendium

A display of the gene expression compendium, the gene expression atlas, is pre-

sented in Figure 8. Based on the experiments reported above on both artificial

data and on the gene expression data itself, we chose to use CCA. On the atlas,

many of the cancer types seem to be fairly coherent in the sense of forming

continuous areas on the display. This is especially clear for categories that were

found to form coherent groups in the original data, such as “Stimulated im-

mune” and “Hela cell cycle.” Some classes are multimodal such as “Prostate

cancer.”

It is even more clear in the atlas that the measurement platforms explain the

broad scale of proximity relationships. This matches the results in the previous

section. A similar pattern can be found in the distribution of the institutes

in the atlas. The institutes tend to use a single platform most of the time

for their experiments, which is clearly visible in the displays, and can also be

easily verified from the data. Only Harvard Medical School used two different

platforms.

5 Discussion

There has been a lot of work done on visualizing gene expression data, but most

of it focuses on visualizing the data from a single experiment. Visualizations

of combined data from several experiments, measured on different platforms,

are mainly targeted for very specific tasks, like in the ChromoViz package [19]

that maps gene expression data to chromosomal order, or are limited to only

two data sets at a time, like in co-inertia analysis of gene expression data sets

[20]. Our goal differs from those in that we try to visualize the whole contents

of a gene expression data bank, or possibly the contents of several data banks

at once. Combined with the ability to make dynamic queries [21] and possibly

with a focus and context interface, the visualization could then be used as the

basis for a powerful tool for visual exploration of gene expression data banks,
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and for searching of useful data sets for in silico experiments.

Based on our results the simple preprocessing used for the gene expression

compendium was not good enough to make the data from different studies

commensurable. The main source of variation in the data was the platform

used in the experiment. Some recent studies [22, 23] indicate that at least some

parts of the differences between platforms are caused by the different sequences

used in the probes, and that matching the probes based on the probe sequence

instead of the gene id can alleviate the problem. This does not solve the whole

problem, however, as there is also evidence of a relatively strong lab effect [24],

which can only be removed by standardization of procedures and training of

personnel.

In addition to the visualization methods tested here we briefly tried two

other methods: Hessian eigenmaps [25] and Alignment of local models [26].

Neither of these was able to produce meaningful results on the gene expression

compendium data. It is still somewhat unclear whether the problems were

inherent to the methods or were caused by the specific implementations we

used.

6 Conclusions

We benchmarked a set of methods for the extremely difficult task of visualizing

proximity relationships within the high-dimensional space of microarray mea-

surements. It turned out that all the recently proposed manifold estimation or

embedding methods had severe difficulties when the output dimensionality was

fixed to two for visualization purposes. An earlier method called curvilinear

components analysis (CCA) outperformed them all in terms of trustworthiness

of the visualizations.

The methods were compared as a feasibility study for constructing a visu-

alizable gene expression atlas, that is, an atlas of gene expression data sets.

It turned out that, as expected, the simple preprocessing methods could not

28



make the different data sets particularly commensurable. The visualizations

did show, however, relationships between the different measurement labs and

chip platforms, which are the main sources of variation in the data. Hence, if

standardization and more sophisticated preprocessing methods continue to de-

velop to bring the biologically interesting variation to the fore, the information

visualization methods are likely to be able to visualize it.

References

[1] H. Hotelling. Analysis of a complex of statistical variables into principal

components. Journal of Educational Psychology, 24:417–441,498–520, 1933.

[2] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling.

Springer, New York, 1997.
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Figure and table captions

Figure 1: Illustration of the measures of trustworthiness and continuity. Visu-

alization is trustworthy if proximate points in the visualization are proximate

also in the original space. Points that are not among the nearest neighbors in

the original space but are in the neighborhood in the visualization decrease the

trustworthiness (Circles inside the dashed neighborhood on the right; Uk(i)).

The projection is continuous if originally proximate points remain proximate.

Points that are in the neighborhood in the original space but not in the vi-

sualization decrease continuity (Squares outside the dashed neighborhood on

the right; Vk(i)). Green Triangle: The point defining the neighborhood. Blue

Square: The five nearest neighbors of the data point in the original space. The

saturation of the color indicates how close the point is in the original space.

Red Circle: Data points that are not neighbors in the original space. The more

saturated the color the further the point is in the original space. Solid line:

Connects neighbors to the data point. Dashed line: connects points that have

moved in/out of the neighborhood in the visualization process. Dashed Circle:

The neighborhood.

Figure 2: Images of the artificial data sets. The coordinates of data points are

coded with RGB values to help in inspecting the visualizations. Each data set

was first scaled to fill the unit cube and then each coordinate axis was associated

with one of the RGB components. a) Two-dimensional S-curve b) Thin S-curve

c) Thick S-curve d) Sphere data e) Thick sphere data f) Cluster data.

Figure 3: Summary of the comparison of the methods based on the toy data

sets
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Figure 4: Numerical comparison of the methods on toy data sets: trustworthi-

ness and continuity as a function of the number of neighbors k in the neighbor

set. a) Two-dimensional S-curve manifold b) Thin S-curve manifold c) Thick

S-curve manifold. Rproj is the average value of 100 linear random projections.

The trustworthiness and continuity values of a random mapping are approxi-

mately 0.5.

Figure 5: Numerical comparison of the methods on toy data sets: trustworthi-

ness and continuity as a function of the number of neighbors k in the neighbor

set. a) Sphere data. b) Thick sphere data c) Cluster data. Rproj is the aver-

age value of 100 linear random projections. The trustworthiness and continuity

values of a random mapping are approximately 0.5.

Figure 6: Sample projections of toy data, chosen to illustrate visually salient

properties of the methods. The color coding of the points is the same as in

Figure 2. a) LLE projection (k = 7) of the S-curve. b) Laplacian eigenmap

projection (k = 4) of the S-curve. c) Laplacian eigenmap projection (k = 72)

of the cluster data. d) Isomap projection (k = 4) of the sphere data. e) CCA

projection of the thick S-curve. f) CCA projection of the thick sphere data.

Figure 7: Trustworthiness of visualizations and continuity of the projections in

(a) the gene expression compendium and (b) the mouse data, as a function of

the number of neighbors in the neighbor set.

Figure 8: A gene expression atlas. Coloring based on cancer type (top), microar-

ray type (bottom left) and institute that performed the experiment (bottom

right)
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Table 1: Coherence of the groups measured by classification percentage of cancer

(and other) groups vs. a random group of the same size. The size of the group is

given in parentheses after the group name. Groups containing several studies are

marked with an asterisk. Groups having a high classification rate (> 90%) have

been emphasized. Data: Classification in the original data space. CCA/PCA:

Classification after dimensionality reduction by CCA/PCA.

Table 2: Are data from the same platform more similar than data from the same

cancer type? Pairwise comparison of the classification strength of the cancer

type vs the platform/institution. Data points measured with the platform of the

column on samples of the cancer type of the row were classified to either of the

two classes. The winner (on the average) is shown in the table, together with

the classification rate in percentages. Classification was done in the original

data space.

Table 3: Are data from the same platform more similar than data from the same

cancer type, in the CCA visualization? For explanation see caption of Table 2.

Table 4: Are data from the same platform more similar than data from the same

cancer type, in the PCA visualization? For explanation see caption of Table 2.
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Method Advantages Disadvantages
PCA Good in terms of continuity of the

mapping. Easy to interpret the
results.

One of the worst methods in
terms of trustworthiness. Can’t
unfold nonlinear structures.

LLE Performs relatively well on simple
manifolds.

Has severe problems if the data
contains clusters. Is sensitive to
the number of neighbors parame-
ter k.

Laplacian
eigenmap

The second best in terms of trust-
worthiness.

Has a strong tendency to magnify
some distances, which can pro-
duce qualitatively very bad visu-
alizations.

Isomap Good in terms of continuity. Trustworthiness is only aver-
age. Produces some distortions
though less than the Laplacian
eigenmap

CCA The best one in terms of trustwor-
thiness. The only method that
was able to split the sphere open
instead of squashing it flat.

Often the worst in terms of conti-
nuity. Sometimes data points can
be “dropped off” by the algorithm
so that they look like outliers. The
cost function has local optima.
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Table 1:

Cancer type Data CCA PCA

B lymphoma * (112) 66 83 60
Leukemia * (141) 45 90 79
Lung Cancer * (253) 78 84 67
Stimulated PBMC (82) 99 88 90
Liver cancer (137) 79 82 81
Viral infection (5) 50 50 51
Stimulated immune (24) 100 92 80
Fibroblast EWS-FLI (10) 98 92 92

Gliomas (47) 91 91 72
Breast cancer (8) 74 93 97

Neuro tumors (90) 78 84 72
Various tumors (154) 80 91 77
NCI60 * (65) 21 88 79
Prostate cancer (102) 100 96 92

Hela cell cycle (48) 100 97 93

Average 77 87 79

Platform

cDNA (Stanford) * (394) 96 79 83
Hu95 (Affymetrix) * (434) 87 74 63
HuGeneFL (Affymetrix) * (450) 51 82 69
Average 78 79 72

Institution

Stanford University * (346) 97 82 82
Harvard Medical School * (601) 76 65 56
MIT * (283) 47 88 74
National Cancer Institute (35) 97 91 94

Applied Genomics,Inc (5) 49 50 50
The Norwegian Radium Hospital (8) 75 92 97

Average 74 78 76
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Table 2:

Cancer type vs cDNA Hu95 HuGeneFL
Platform (Stanford) (Affymetrix) (Affymetrix)
B lymphoma cDNA B lymphoma

100 70
Leukemia Hu95 HuGeneFL

97 100
Lung Cancer cDNA Hu95

100 85
NCI60 cDNA NCI60

100 87
Cancer type vs Stanford Harvard MIT
Institution University Medical School
B lymphoma Harvard

84
Leukemia Harvard MIT

96 98
Lung Cancer Stanford Harvard

100 78
NCI60 NCI60

98
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Table 3:

Cancer type vs cDNA Hu95 HuGeneFL
Platform (Stanford) (Affymetrix) (Affymetrix)
B lymphoma cDNA HuGeneFL

95 96
Leukemia Leukemia HuGeneFL

94 55
Lung Cancer cDNA Hu95

78 69
NCI60 cDNA HuGeneFL

92 69
Cancer type vs Stanford Harvard MIT
Institution University Medical School
B lymphoma Harvard

89
Leukemia Leukemia MIT

94 57
Lung Cancer Stanford Harvard

78 70
NCI60 MIT

61
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Table 4:

Cancer type vs cDNA Hu95 HuGeneFL
Platform (Stanford) (Affymetrix) (Affymetrix)
B lymphoma cDNA HuGeneFL

92 82
Leukemia Leukemia Leukemia

87 58
Lung Cancer cDNA Hu95

89 83
NCI60 cDNA HuGeneFL

100 54
Cancert type vs Stanford Harvard MIT
Institution University Medical School
B lymphoma Harvard

88
Leukemia Leukemia Leukemia

84 57
Lung Cancer Stanford Harvard

86 80
NCI60 NCI60

54
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