
Dimensionality Reduction for Data Visualization

Samuel Kaski and Jaakko Peltonen

Dimensionality reduction is one of the basic operations in the toolbox of data-analysts and de-

signers of machine learning and pattern recognition systems. Given a large set of measured variables

but few observations, an obvious idea is to reduce the degrees of freedom in the measurements by

representing them with a smaller set of more “condensed” variables. Another reason for reducing

the dimensionality is to reduce computational load in further processing. A third reason is visual-

ization. “Looking at the data” is a central ingredient of exploratory data analysis, the first stage of

data analysis where the goal is to make sense of the data before proceeding with more goal-directed

modeling and analyses. It has turned out that although these different tasks seem alike their solution

needs different tools. In this article we show that dimensionality reduction to data visualization can

be represented as an information retrieval task, where the quality of visualization can be measured by

precision and recall measures and their smoothed extensions, and that visualization can be optimized

to directly maximize the quality for any desired tradeoff between precision and recall, yielding very

well-performing visualization methods.

HISTORY

Each multivariate observation xi = [xi1, ...xin]
T is a point in an n-dimensional space. A key idea

in dimensionality reduction is that if the data lies in a d-dimensional (d < n) subspace of the n-

dimensional space, and if we can identify the subspace, then there exists a transformation which

loses no information and allows the data to be represented in a d-dimensional space. If the data

lies in a (linear) subspace then the transformation is linear, and more generally the data may lie in a

d-dimensional (curved) manifold and the transformation is non-linear.

Among the earliest methods are so-called Multidimensional Scaling (MDS) methods [1] which

try to position data points into a d-dimensional space such that their pairwise distances are preserved

as well as possible. If all pairwise distances are preserved, it can be argued that the data manifold has

been identified (up to some transformations). In practice, data of course are noisy and the solution

is found by minimizing a cost function such as the squared loss between the pairwise distances,

EMDS =∑i, j(d(xi,x j)−d(x′i,x
′
j))

2, where the d(xi,x j) are the original distances between the points xi

and x j, and the d(x′i,x
′
j) are the distances between their representations x′i and x′j in the d-dimensional

space.

MDS comes in several flavors that differ in their specific form of cost function and additional con-

straints on the mapping, and some of the choices give familiar methods such as Principal Components

Analysis or Sammon’s mapping as special cases.

Neural computing methods are other widely used families of manifold embedding methods. So-

called Autoencoder Networks (see, e.g., [2]) pass the data vector through a lower-dimensional bot-

tleneck layer in a neural network which aims to reproduce the original vector. The activities of the
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neurons in the bottleneck layer give the coordinates on the data manifold. Self-Organizing Maps

(see [3]), on the other hand, directly learn a discrete representation of a low-dimensional manifold by

positioning weight vectors of neurons along the manifold; the result is a discrete approximation to

principal curves or manifolds, a non-linear generalization of principal components [4].

In 2000 a new manifold learning boom was begun after publication of two papers in Science show-

ing how to learn nonlinear data manifolds. Locally Linear Embedding [5] made, as the name reveals,

locally linear approximations to the nonlinear manifold. The other, called Isomap [6], is essentially

MDS tuned to work along the data manifold. After the manifold has been learned, distances will be

computed along the manifold. But plain MDS tries to approximate distances of the data space which

do not follow the manifold, and hence plain MDS will not work in general. That is why Isomap

starts by computing distances along the data manifold, approximated by a graph connecting neighbor

points. Since only neighbors are connected, the connections are likely to be on the same part of the

manifold instead of jumping across gaps to different brances; distances along the neighborhood graph

are thus decent approximations of distances along the data manifold known as “geodesic distances”.

A large number of other approaches have been introduced for learning of manifolds during the

past ten years, including methods based on spectral graph theory and based on simultaneous variance

maximization and distance preservation.

CONTROVERSY

Manifold learning research has been criticized for lack of clear goals. Many papers introduce a new

method and only show its performance by nice images of how it learns a toy manifold. A famous

example is the “Swiss roll,” a two-dimensional data sheet curved in three dimensions into a Swiss roll

shape. Many methods have been shown capable of unrolling the Swiss roll but few have been shown

to have real applications, success stories, or even to quantitatively outperform alternative methods.

One reason why quantitative comparisons are rare is that the goal of manifold embedding has not

always been clearly defined. In fact, manifold learning may have several alternative goals depending

on how the learned manifold will be used. We focus on one specific goal, data visualization, intended

for helping analysts to look at the data and find related observations during exploratory data analysis.

Data visualization is traditionally not a well-defined task either. But it is easy to observe empiri-

cally [7] that many of the manifold learning methods are not good for data visualization. The reason

is that they have been designed to find a d-dimensional manifold if the inherent dimensionality of data

is d. For visualization, the display needs to have d = 2 or d = 3; that is, the dimensionality may need

to be reduced beyond the inherent dimensionality of data.

NEW PRINCIPLE

It is well-known that a high-dimensional data set cannot in general be faithfully represented in a

lower-dimensional space, such as the plane with d = 2. Hence a visualization method needs to choose

what kinds of errors to make. The choice naturally should depend on the visualization goal; it turns

out that under a specific but general goal the choice can be expressed as an interesting tradeoff, as we

will describe below.

When the task is to visualize which data points are similar, the visualization can have two kinds

of errors (Figure 1): it can miss some similarities (i.e. it can place similar points far apart as false

negatives) or it can bring dissimilar data points close together as false positives. If we know the
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Figure 1: A visualization can have two kinds of errors (from [9]). When a neighborhood Pi in the

high-dimensional input space is compared to a neighborhood Qi in the visualization, false positives

are points that appear to be neighbors in the visualization but are not in the original space; misses

(which could also be called false negatives) are points that are neighbors in the original space but not

in the visualization.

cost of each type of error, the visualization can be optimized to minimize the total cost. Hence,

once the user gives the relative cost of misses and false positives, it fixes visualization to be a well-

defined optimization task. It turns out [8, 9] that under simplifying assumptions the two costs turn into

precision and recall, standard measures between which a user-defined tradeoff is made in information

retrieval.

Hence, the task of visualizing which points are similar can be formalized as a task of visual

information retrieval, that is, retrieval of similar points based on the visualization. The visualization

can be optimized to maximize information retrieval performance, involving as an unavoidable element

a trade-off between precision and recall. In summary, visualization can be made into a rigorous

modeling task, under the assumption that the goal is to visualize which data points are similar.

When the simplifying assumptions are removed the neighborhoods are allowed to be continuous-

valued probability distributions pi j of point j being a neighbor of point i. Then it can be shown that

suitable analogues of precision and recall are distances between the neighborhood distributions p in

the input space and q on the display. More specifically, the Kullback-Leibler divergence D(pi,qi)
reduces under simplifying assumptions to recall and D(qi, pi) to precision. The total cost is then

E = λ∑
i

D(pi,qi)+(1−λ )∑
j

D(qi, pi) , (1)

where λ is the relative cost of misses and false positives. The display coordinates of all data points are

then optimized to minimize this total cost; several nonlinear optimization approaches could be used,

we have simply used conjugate gradient descent. This method has been called NeRV for Neighbor

Retrieval Visualizer [8, 9]. When λ = 1 the method reduces to Stochastic Neighbor Embedding [10],

an earlier method which we now see maximizes recall.
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Figure 2: Tradeoff between precision and recall in visualizing a sphere (from [9]). Left: the three-

dimensional location of points on the three-dimensional sphere is encoded into colors and glyph

shapes. Center: two-dimensional visualization that maximizes recall by squashing the sphere flat.

All original neighbors remain close-by but false positives (false neighbors) from opposite sides of the

sphere also become close-by. Right: visualization that maximizes precision by peeling the sphere

surface open. No false positives are introduced but some original neighbors are missed across the

edges of the tear.

Visualization of a simple data distribution makes the meaning of the tradeoff between precision

and recall more concrete. When visualizing the surface of a three-dimensional sphere in two dimen-

sions, maximizing recall squashes the sphere flat (Figure 2) whereas maximizing precision “peels”

the surface open. Both solutions are good, but have different kinds of errors.

Both nonlinear and linear visualizations can be optimized by minimizing (1). The remaining prob-

lem is how to define the neighborhoods p; in the absence of more knowledge, symmetric Gaussians

or more heavy-tailed distributions are justifiable choices. An even better alternative is to derive the

neighborhood distributions from probabilistic models that encode our knowledge of the data, both

prior knowledge and what was learned from data.

Deriving input similarities from a probabilistic model has recently been done in Fisher Informa-

tion Nonparametric Embedding [11], where the similarities (distances) approximate Fisher informa-

tion distances (geodesic distances where the local metric is defined by a Fisher information matrix)

derived from nonparametric probabilistic models. In related earlier work [12, 13], approximated

geodesic distances were computed in a ‘learning metric’ derived using Fisher information matrices

for a conditional class probability model. In all these works, though, the distances were given to

standard visualization methods, which have not been designed for a clear task of visual information

retrieval. In contrast, we will combine the model-based input similarities to the rigorous precision-

recall approach to visualization. Then the whole procedure corresponds to a well-defined modeling

task where the goal is to visualize which data points are similar. We will next discuss this in more

detail in two concrete applications.
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APPLICATION 1: VISUALIZATION OF GENE EXPRESSION COMPENDIA

FOR RETRIEVING RELEVANT EXPERIMENTS

In the study of molecular biological systems, behavior of the system can seldom be inferred from first

principles either because such principles are not known yet or because each system is different. The

study needs to be data-driven. Moreover, in order to make research cumulative, new experiments need

to be placed in the context of earlier knowledge. In the case of data-driven research, a key part of that

is retrieval of relevant experiments. An earlier experiment, a set of measurements, is relevant if some

of the same biological processes are active in it, either intentionally or as side effects.

In molecular biology it has become standard practice to store experimental data in repositories

such as ArrayExpress of the European Bioinformatics Institute EBI. Traditionally, experiments are

sought from the repository based on metadata annotations only, which works well when searching

for experiments that involve well-annotated and well-known biological phenomena. In the interesting

case of studying and modeling new findings, more data-driven approaches are needed, and informa-

tion retrieval and visualization based on latent variable models are promising tools [14].

Let’s assume that in experiment i data gi have been measured; in the concrete case below gi will

be a differential gene expression vector, where gi j is expression level of gene or gene set j compared

to a control measurement. Now if we fit to the compendium a model that generates a probability

distribution over the experiments, p(gi,zi|θ), where the θ are parameters of the model which we

will omit below and z are latent variables, this model can be used for retrieval and visualization

as explained below. This modeling approach makes sense in particular if the model is constructed

such that the latent variables have an interpretation as activities of latent or “underlying” biological

processes which are manifested indirectly as the differential gene expression.

Given the model, relevance can be defined in a natural way as follows: Likelihood of experiment i

being relevant for an earlier experiment j is p(gi|g j) =
∫
p(gi|z)p(z|g j)dz. That is, the experiment is

relevant if it is likely that the measurements have arisen as products of the same unknown biological

processes z. This definition of relevance can now be used for retrieving the most relevant experiments

and, moreover, the definition can be used as the natural probability distribution p in (1) to construct a

visual information retrieval interface (Figure 3); in this case the data are 105 microarray experiments

from the Array Express database, comparing pathological samples such as cancer tissues to healthy

samples.

Above the visual information retrieval idea was explained in abstract concepts, applicable to many

data sources. In the gene expression retrieval case of Figure 3, the data were expressions of a priori

defined gene sets, quantized into counts, and the probabilistic model was the Discrete Principal Com-

ponent Analysis model, also called Latent Dirichlet Allocation, and in the context of texts called

a topic model. The resulting relevances can directly be given as inputs to the Neighbor Retrieval

Visualizer (NeRV); in Figure 3 a slightly modified variant of the relevances was used, details in [14].

In summary, fitting a probabilistic latent variable model to the data produces a natural relevance

measure which can then be plugged as a similarity measure into the visualization framework. Every-

thing from start to finish is then based on rigorous choices.

APPLICATION 2: VISUALIZATION OF GRAPHS

Graphs are a natural representation of data in several fields where visualizations are helpful: social net-

works analysis, interaction networks in molecular biology, citation networks, etc. In a sense, graphs
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Figure 3: A visual information retrieval interface to a collection of microarray experiments visualized

as glyphs on a plane (from [14]). A: Glyph locations have been optimized by the Neighbor Retrieval

Visualizer so that relevant experiments are close-by. For this experiment data, relevance is defined

by the same data-driven biological processes being active, as modeled by a latent variable model

(component model). B: Enlarged view with annotations; each color bar corresponds to a biological

component or process, and the width tells the activity of the component. These experiments are

retrieved as relevant for the melanoma experiment shown in the center. C: The biological components

(nodes in the middle) link the experiments (left) to sets of genes (right) activated in them.
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Figure 4: Visualizations of graphs. A: US college football teams (nodes) and who they played against

(edges). The visual groups of teams match the 12 conferences arranged for yearly play (shown with

different colors). B-C: word adjacencies in the works of Jane Austen. The nodes are words, and

edges mean the words appeared next to each other in the text. The NeRV visualization in B shows

visual groups which reveal syntactic word categories: adjectives, nouns and verbs shown in blue, red,

and green. The edge bundles reveal disassortative structure which matches intuition, for example,

verbs are adjacent in text to nouns or adjectives and not to other verbs. Earlier graph layout methods

(Walshaw’s algorithm shown in C) fail to reveal the structure. Figure from [17], c© ACM, 2010.

are high-dimensional structured data where nodes are points and all other nodes are dimensions; the

value of the dimension is the type or strength of the link.

There exist lots of graph drawing algorithms, including string analogy-based methods such as

Walshaw’s algorithm [15] and spectral methods [16]. Most of them focus explicitly or implicitly on

local properties of graphs, drawing nodes linked by an edge close together but avoiding overlap. That

works well for simple graphs but for large and complicated ones additional principles are needed to

avoid the famous “hairball” visualizations.

A promising direction forward is to learn a probabilistic latent variable model of the graph, in

the hope of capturing its central properties, and then focus on visualizing those properties. In the

case of graphs, the data to be modeled is which other nodes a node links to. But as the observed

links in a network may be stochastic (noisy) measurements such as gene interaction measurements,

it makes sense to assume that the links are a sample from an underlying link distribution, and learn

a probabilistic latent variable model to model the distributions. The similarity of two nodes is then

naturally evaluated as similarity of their link distributions. The rest of the visualization can proceed

as in the previous section, with experiments replaced by graph nodes.

Figure 4 shows sample graphs visualized based on a variant of Discrete Principal Components

Analysis or Latent Dirichlet Allocation suitable for graphs. With this link distribution-based approach,

the Neighbor Retrieval Visualizer places nodes close-by on the display if they link to similar other

nodes, with similarity defined as similarity of link distributions. This has the nice side-result that links

form bundles where all start nodes are similar and all end nodes are similar.

In summary, the idea is to use any prior knowledge in choosing a suitable model for the graph,

and after that all steps of the visualization follow naturally and rigorously from start to finish. In the

absence of prior knowledge flexible machine learning models such as the Discrete Principal Compo-

nents Analysis above can be learned from data.
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CONCLUSIONS

We have discussed dimensionality reduction for a specific goal, data visualization, which has been

so far defined mostly only heuristically. Recently it has been suggested that a specific kind of data

visualization task, that is, visualization of similarities of data points, could be formulated as a visual

information retrieval task, with a well-defined cost function to be optimized. The information retrieval

connection further reveals that a tradeoff between misses and false positives needs to be made in

visualization as in all other information retrieval. Moreover, the visualization task can be turned

into a well-defined modeling problem by inferring the similarities using probabilistic models that are

learned to fit the data.

A free software package that solves nonlinear dimensionality reduction as visual information re-

trieval, with a method called NeRV for Neighbor Retrieval Visualizer, is available at

http://www.cis.hut.fi/projects/mi/software/dredviz/.

AUTHORS

Samuel Kaski (samuel.kaski@tkk.fi) is a Professor of Computer Science in Aalto University and Di-

rector of Helsinki Institute for Information Technology HIIT, a joint research institute of Aalto Uni-

versity and University of Helsinki. He studies machine learning, in particular multi-source machine

learning, with applications in bioinformatics, neuroinformatics and proactive interfaces.

Jaakko Peltonen (jaakko.peltonen@tkk.fi) is a postdoctoral researcher and docent at Aalto Univer-

sity, Department of Information and Computer Science. He received the D.Sc. degree from Helsinki

University of Technology in 2004. He is an associate editor of Neural Processing Letters and has

served in program committees of eleven conferences. He studies generative and information theoretic

machine learning especially for exploratory data analysis, visualization, and multi-source learning.

References

[1] I. Borg and P. Groenen, Modern Multidimensional Scaling. New York: Springer, 1997.

[2] G. Hinton, “Connectionist learning procedures,” Artificial Intelligence, vol. 40, pp. 185–234,

1989.

[3] T. Kohonen, Self-Organizing Maps. Berlin: Springer, 3rd ed., 2001.

[4] F. Mulier and V. Cherkassky, “Self-organization as an iterative kernel smoothing process,” Neu-

ral Computation, vol. 7, pp. 1165–1177, 1995.

[5] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,”

Science, vol. 290, pp. 2323–2326, 2000.

[6] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric framework for nonlinear

dimensionality reduction,” Science, vol. 290, pp. 2319–2323, 2000.

[7] J. Venna and S. Kaski, “Comparison of visualization methods for an atlas of gene expression

data sets,” Information Visualization, vol. 6, pp. 139–154, 2007.

8



[8] J. Venna and S. Kaski, “Nonlinear dimensionality reduction as information retrieval,” in Pro-

ceedings of AISTATS*07, the 11th International Conference on Artificial Intelligence and Statis-

tics (JMLR Workshop and Conference Proceedings Volume 2) (M. Meila and X. Shen, eds.),

pp. 572–579, 2007.

[9] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski, “Information retrieval perspective to

nonlinear dimensionality reduction for data visualization,” Journal of Machine Learning Re-

search, vol. 11, pp. 451–490, 2010.

[10] G. Hinton and S. T. Roweis, “Stochastic neighbor embedding,” in Advances in Neural Informa-

tion Processing Systems 14 (T. Dietterich, S. Becker, and Z. Ghahramani, eds.), pp. 833–840,

Cambridge, MA: MIT Press, 2002.

[11] K. M. Carter, R. Raich, W. G. Finn, and A. O. Hero III, “FINE: Fisher information nonparametric

embedding,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 11,

pp. 2093–2098, 2009.

[12] S. Kaski, J. Sinkkonen, and J. Peltonen, “Bankruptcy analysis with self-organizing maps in

learning metrics,” IEEE Transactions on Neural Networks, vol. 12, pp. 936–947, 2001.

[13] J. Peltonen, A. Klami, and S. Kaski, “Improved learning of Riemannian metrics for exploratory

analysis,” Neural Networks, vol. 17, pp. 1087–1100, 2004.

[14] J. Caldas, N. Gehlenborg, A. Faisal, A. Brazma, and S. Kaski, “Probabilistic retrieval and vi-

sualization of biologically relevant microarray experiments,” Bioinformatics, vol. 25, no. 12,

pp. i145–i153, 2009.

[15] C. Walshaw, “A multilevel algorithm for force-directed graph drawing,” in GD ’00: Proceedings

of the 8th International Symposium on Graph Drawing, (London, UK), pp. 171–182, Springer-

Verlag, 2001.

[16] K. M. Hall, “An r-dimensional quadratic placement algorithm,” Management Science, vol. 17,

no. 3, pp. 219–229, 1970.

[17] J. Parkkinen, K. Nybo, J. Peltonen, and S. Kaski, “Graph visualization with latent

variable models,” in Proceedings of MLG-2010, the Eighth Workshop on Mining and

Learning with Graphs, (New York, NY, USA), pp. 94–101, ACM, 2010. DOI:

http://doi.acm.org/10.1145/1830252.1830265.

9


