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Abstract

Two recent methods, Neighborhood Components Analysis (N&@® Informa-
tive Discriminant Analysis (IDA), search for a class-disunative subspace or
discriminative components of data, equivalent to learning of distance metrics in-
variant to changes perpendicular to the subspace. Carnisgganetrics to a sub-
space is useful for regularizing the metrics, and for dinmraity reduction. We
introduce a variant of NCA and IDA that reduces their compaotel complex-
ity from quadratic to linear in the number of data samples réplacing their
purely non-parametric class density estimates with semipatric mixtures of
Gaussians. In terms of accuracy, the method is shown torpeds well as NCA
on benchmark data sets, outperforming several populaaridienensionality re-
duction methods.

1 Introduction

Optimizing the distance metric has been intensively stlidherecent years. We focus on classi-
fication tasks, where algorithms typically use the metricémpare samples to each other or to
prototypes; then the criterion of learning the metric igdretlassification, or more generally better
discriminability of the classes. This task can be catliesdtriminative component analysis. Another
possible application domain is “supervised unsupervisaching,” where the metric is learned in a
supervised setting and used for unsupervised learning [1].

In classification settings methods have been introducetefoning both global ([2, 3, 4, 5, 6, 7]
and many others) and local [8, 9, 10] metrics. Two essentajuivalent methods, Neighborhood
Components Analysis (NCA,; [4]) and Informative Discrimimanalysis (IDA; [6, 11]), search for
subspaces which both regularizes the problem and helpalizsuhe results. The methods are non-
parametric and hence do not require distributional assiomptThe downside is the computational
complexity; each iteration in the optimization(¥ N?) whereN is the number of data points.

We introduce a faster method which still outperforms sevarear dimensionality reduction meth-
ods on benchmark data sets. The method(i87), since it uses semiparametric mixtures of Gaus-
sians for density estimation. We denote the method DCA-Giridor “discriminative component
analysis by Gaussian mixtures”). The method finds a clemwidiinative subspace. In several ap-
plications such as visualization of class separability shbspace is the main result. If a metric
is desired then it can be sought with several methods in thepsice; we introduce a fast method
having linear computational complexity.



2 The method

We begin with a labelled data set consisting\bfeal-valued input vectors; in R” and correspond-
ing class labelg; (C classes in total). The task is to find a low-dimensional lirteensformation
A : RP — R?such that the transformation preserves as much informegiquired for classification
as possible. The performance will be measured by a clasgfedorking on the transformed data.
Combining the steps, both the transformation and the piadian be optimized simultaneously.

We use a parametric class predictor derived from a mixtur&atfissians representation for the
transformed datg and their classes. We represent each class as a mixtiéfe3Hussian densities
with a single covariance matrix for each claskhe mixture generates the following density:
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wherea. are overall class weightgj, , are weights for individual Gaussian compone?ntmd
N(y; e, Xc) is the density of a Gaussian distribution with mean, and covariance matrix..,
computed ay. Theac, (., K., and3, are parameters of the mixture, together denéted

As our objective function we maximize the log probabilityasirrect classification:
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We maximize this objective function with respect to the éinéransformationA (we also add a
term that penalizes the matrix norm). Note that the objedtimction only involves the conditional
probabilitiesp(c|Ax;; 0); thus, although our model functionally generates a joimisity, the linear
transformation is trained discriminatively. For the midyparameterg we use a hybrid approach
described in the next section.

2.1 Learning the model parameters

We first discuss how to learn the linear transformation, &ed how to learn the mixture parameters.
For the linear transformation we use standard conjugatiggraoptimization. It can be shown that
the gradient of the objective function (2) is
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A hybrid optimization approach. We could in principle use conjugate gradient to learn bogh th
linear transformation and the mixture parameterkistead, for convenience we use expectation
maximization (EM) to learn the centegs. ,, the covariancek.., and the weights.. and .. ;. from

the transformed data. We do a few steps of this EM estimatidare each iteration of conjugate
gradient. The hybrid optimization is not a requirement afmedel but a convenient simplification;
we then only need to optimize the transformatiarby conjugate gradient.

!Allowing different numbers of Gaussians for the classes or diffevevariance matrices for each Gaussian
would yield very similar equations.

’Thea, andg. ; are nonnegative; the. sum to one, and th8. , sum to one for each

3Reparameterizations would be necessary to makexthend 3. stay multinomial distributions during
optimization, and to make the. stay valid covariance matrices.



Improving optimization by reparameterization. In the hybrid approach described above, he
do not change during the conjugate gradient iterationXofThis can slow down convergence. We
briefly mention that it is possible avoid the slowdown by nmgjpart of the mixture directly depen-
dent onA: reparameterize the centgis ; = Au;k Whereu’cyk are locations iR”. This changes

the gradient (3) only slightly: the rightmost term changesrfx; to (x; — u., ;)" In the EM step,
estimateu;k givenp(k|Ax;, c;; 0) by u;k = Y ie—e P(K|AX:, i 0)%i/ D5 _ . D(K|AX, ci50)
which is equivalent to EM where the hidden variable distiinuis computed from transformed data
by p(k|Ax;, c;;0).% In the experiments we did not use the reparameterization.

2.2 Properties of the method

Computational complexity. The computational complexities of the gradient computediod EM
estimation ar&(NCKdD + NCd? + Cd?® + CKd*) andO(NDd + NCKd? + Cd® + CKd?)
respectively; both are linear with respect to the numbemaiesN. The total running time de-
pends on the number of iterations and numbers of gradienpatations and EM steps per iteration.
In the experiments we ran the algorithm for fixed small nuralodéiiterations and EM steps.

Partial unidentifiability of the metric.  The linear transformation is identifiable only with respect
to the subspace it finds: within the subspace, changes imter transformation can be exchanged
with changes in the mixture parametérs.

In some cases identifying the subspace is enough, but okeadse wish to find a metric for it. Our
method provides a well-defined estimate of conditionalsctasbabilities; this estimate is unaffected
by unidentifiability and can be used to derive a metric in thggetion space. We briefly mention
three possibilities: 1) If the topology in the projectiorasp is unimportant, simply compare points
by their estimated class distributions. 2) For a local, togy preserving metric, compute local
Fisher matrices as in [1]. 3) For a global, topology preseyvnetric, run NCA inside the projection
space, or average local Fisher matrices over data poirgddtter is anO(N) computation). In
the experiments we did not use these possibilities but usedticlidean metric after the linear
transformation; this sufficed to get good results.

Relation to previous work. Linear Discriminant Analysis (LDA) and some of its extemso
[13, 14] can be interpreted as generative models that usstricted mixture of Gaussians to model
data and their classes jointly, whereas we optimize theitondl likelihood of the classes. Dis-
criminative methods have been proposed based on a congmatiyieasier alternative to Shannon
entropy (see [15]), approximations to Shannon entropy, [lil&lihood ratios of class-specific and
class-independent models [17], and conditional covagamperators on reproducing kernel Hilbert
spaces [2]; advantages of our method are that it does ndveepproximations, does not reduce to
LDA even for simple models, and has an intuitive yet rigorobgctive function. The most closely
related earlier work are IDA [6, 11] and NCA [4] which optireia nonparametric conditional class
predictor; our use of a semiparametric predictor improyeEsed and robustness compared to IDA
and NCA.

3 Experiments

We evaluated the performance of our method (DCA-GM) on feandard data sets from the UC
Irvine repository (Wine, Balance, lonosphere, and Irigcltdata set was split 30 times into training
(70%) and testing (30%) subsets. We implemented threerlswgeervised dimensionality-reduction
methods for comparison: LDA, LDA+Relevant Component As@y(RCA; [18]) and NCA. In our
method we used a mixture of three Gaussians to model each wlasised K-means and LDA+RCA
to initialize the mixture and linear transformation, respeely. The performance of the methods was
evaluated by test accuracy of K nearest neighbor (KNN) iflaason (we use K=1).

The classification results on the test subsets are presantédure 1. DCA-GM is comparable
with NCA which is considered to be the state-of-the-art. fhese small data sets both NCA and

4A similar back-projection approach was used in [12], but only at the staptimization.
®For any invertiblel x d matrix B we havep(c|BAx; 6) = p(c|Ax; 6') whered’ uses covariance matrices
B~ '2.B~"" and theu,, ,, B, anda. are the same as th




DCA-GM run fast and there is no significant difference in thiahning times; however, as stated in
the previous sections, DCA-GM has much smaller computaticomplexity than NCA. We plan to
run larger data sets later to show the difference.
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Figure 1: KNN classification accuracy on UCI data sets WinalaBce (bal), lonosphere (ion),
and Iris. Results are averages of test data results overai@atons of splitting each data set into
training (70%) and testing (30%) subsets. A linear dimemsioy reduction down tel = 2 was
applied in all cases.

4 Conclusions

We have presented a fast method for finding subspaces wlasses| of data can be well discrimi-

nated. The method optimizes a well-defined criterion, perémce of a semiparametric mixture of
Gaussians predictor for the classes. The method has linegslexity with respect to the number of

samples and performed as well as the state of the art NCA mhethbenchmark data sets. Here the
method was used in a simple fashion to compare examples,éatss mentioned more advanced
approaches for future work.
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