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Abstract

Two recent methods, Neighborhood Components Analysis (NCA) and Informa-
tive Discriminant Analysis (IDA), search for a class-discriminative subspace or
discriminative components of data, equivalent to learning of distance metrics in-
variant to changes perpendicular to the subspace. Constraining metrics to a sub-
space is useful for regularizing the metrics, and for dimensionality reduction. We
introduce a variant of NCA and IDA that reduces their computational complex-
ity from quadratic to linear in the number of data samples, byreplacing their
purely non-parametric class density estimates with semiparametric mixtures of
Gaussians. In terms of accuracy, the method is shown to perform as well as NCA
on benchmark data sets, outperforming several popular linear dimensionality re-
duction methods.

1 Introduction

Optimizing the distance metric has been intensively studied in recent years. We focus on classi-
fication tasks, where algorithms typically use the metric tocompare samples to each other or to
prototypes; then the criterion of learning the metric is better classification, or more generally better
discriminability of the classes. This task can be calleddiscriminative component analysis. Another
possible application domain is “supervised unsupervised learning,” where the metric is learned in a
supervised setting and used for unsupervised learning [1].

In classification settings methods have been introduced forlearning both global ([2, 3, 4, 5, 6, 7]
and many others) and local [8, 9, 10] metrics. Two essentially equivalent methods, Neighborhood
Components Analysis (NCA; [4]) and Informative Discriminant Analysis (IDA; [6, 11]), search for
subspaces which both regularizes the problem and helps visualize the results. The methods are non-
parametric and hence do not require distributional assumptions. The downside is the computational
complexity; each iteration in the optimization isO(N2) whereN is the number of data points.

We introduce a faster method which still outperforms several linear dimensionality reduction meth-
ods on benchmark data sets. The method isO(N), since it uses semiparametric mixtures of Gaus-
sians for density estimation. We denote the method DCA-GM (short for “discriminative component
analysis by Gaussian mixtures”). The method finds a class-discriminative subspace. In several ap-
plications such as visualization of class separability thesubspace is the main result. If a metric
is desired then it can be sought with several methods in the subspace; we introduce a fast method
having linear computational complexity.



2 The method

We begin with a labelled data set consisting ofN real-valued input vectorsxi in R
D and correspond-

ing class labelsci (C classes in total). The task is to find a low-dimensional linear transformation
A : R

D → R
d such that the transformation preserves as much informationrequired for classification

as possible. The performance will be measured by a class predictor working on the transformed data.
Combining the steps, both the transformation and the predictor can be optimized simultaneously.

We use a parametric class predictor derived from a mixture ofGaussians representation for the
transformed datay and their classes. We represent each class as a mixture ofK Gaussian densities
with a single covariance matrix for each class.1 The mixture generates the following density:

p(y, c; θ) =
K

∑

k=1

αcβc,kN(y;µc,k,Σc) (1)

whereαc are overall class weights,βc,k are weights for individual Gaussian components,2 and
N(y;µc,k,Σc) is the density of a Gaussian distribution with meanµc,k and covariance matrixΣc,
computed aty. Theαc, βc,k, µc,k, andΣc are parameters of the mixture, together denotedθ.

As our objective function we maximize the log probability ofcorrect classification:

L(A, θ) =
∑

i

log p(ci|Axi; θ) =
∑

i

log
p(Axi, ci; θ)

∑

c p(Axi, c; θ)
(2)

We maximize this objective function with respect to the linear transformationA (we also add a
term that penalizes the matrix norm). Note that the objective function only involves the conditional
probabilitiesp(c|Axi; θ); thus, although our model functionally generates a joint density, the linear
transformation is trained discriminatively. For the mixture parametersθ we use a hybrid approach
described in the next section.

2.1 Learning the model parameters

We first discuss how to learn the linear transformation, and then how to learn the mixture parameters.
For the linear transformation we use standard conjugate gradient optimization. It can be shown that
the gradient of the objective function (2) is

∂L(A, θ)

∂A
=

∑

i,c,k

(

p(c, k|Axi; θ) − δci,cp(k|Axi, ci; θ)
)

Σ−1

c (Axi − µc,k)xT
i (3)

whereδci,c is one ifci = c and zero otherwise, and

p(c, k|Ax; θ) =
αcβc,kN(Ax;µc,k,Σc)

∑

c′,l αc′βc′,lN(Ax;µc′,l,Σc′)
, p(k|Ax, c; θ) =

βc,kN(Ax;µc,k,Σc)
∑

l βc,lN(Ax;µc,l,Σc)
.

(4)

A hybrid optimization approach. We could in principle use conjugate gradient to learn both the
linear transformation and the mixture parameters.3 Instead, for convenience we use expectation
maximization (EM) to learn the centersµc,k, the covariancesΣc, and the weightsαc andβc,k from
the transformed data. We do a few steps of this EM estimation before each iteration of conjugate
gradient. The hybrid optimization is not a requirement of our model but a convenient simplification;
we then only need to optimize the transformationA by conjugate gradient.

1Allowing different numbers of Gaussians for the classes or differentcovariance matrices for each Gaussian
would yield very similar equations.

2Theαc andβc,k are nonnegative; theαc sum to one, and theβc,k sum to one for eachc.
3Reparameterizations would be necessary to make theαc andβc,k stay multinomial distributions during

optimization, and to make theΣc stay valid covariance matrices.



Improving optimization by reparameterization. In the hybrid approach described above, theθ
do not change during the conjugate gradient iteration forA. This can slow down convergence. We
briefly mention that it is possible avoid the slowdown by making part of the mixture directly depen-
dent onA: reparameterize the centersµc,k = Aµ

′

c,k whereµ
′

c,k are locations inRD. This changes
the gradient (3) only slightly: the rightmost term changes fromxT

i to (xi −µ
′

c,k)T . In the EM step,
estimateµ′

c,k givenp(k|Axi, ci; θ) by µ
′

c,k =
∑

i:ci=c p(k|Axi, ci; θ)xi/
∑

i:ci=c p(k|Axi, ci; θ)
which is equivalent to EM where the hidden variable distribution is computed from transformed data
by p(k|Axi, ci; θ).4 In the experiments we did not use the reparameterization.

2.2 Properties of the method

Computational complexity. The computational complexities of the gradient computation and EM
estimation areO(NCKdD + NCd2 + Cd3 + CKd2) andO(NDd + NCKd2 + Cd3 + CKd2)
respectively; both are linear with respect to the number of samplesN . The total running time de-
pends on the number of iterations and numbers of gradient computations and EM steps per iteration.
In the experiments we ran the algorithm for fixed small numbers of iterations and EM steps.

Partial unidentifiability of the metric. The linear transformation is identifiable only with respect
to the subspace it finds: within the subspace, changes in the linear transformation can be exchanged
with changes in the mixture parameters.5

In some cases identifying the subspace is enough, but often we also wish to find a metric for it. Our
method provides a well-defined estimate of conditional class probabilities; this estimate is unaffected
by unidentifiability and can be used to derive a metric in the projection space. We briefly mention
three possibilities: 1) If the topology in the projection space is unimportant, simply compare points
by their estimated class distributions. 2) For a local, topology preserving metric, compute local
Fisher matrices as in [1]. 3) For a global, topology preserving metric, run NCA inside the projection
space, or average local Fisher matrices over data points (the latter is anO(N) computation). In
the experiments we did not use these possibilities but used the Euclidean metric after the linear
transformation; this sufficed to get good results.

Relation to previous work. Linear Discriminant Analysis (LDA) and some of its extensions
[13, 14] can be interpreted as generative models that use a restricted mixture of Gaussians to model
data and their classes jointly, whereas we optimize the conditional likelihood of the classes. Dis-
criminative methods have been proposed based on a computationally easier alternative to Shannon
entropy (see [15]), approximations to Shannon entropy [16], likelihood ratios of class-specific and
class-independent models [17], and conditional covariance operators on reproducing kernel Hilbert
spaces [2]; advantages of our method are that it does not involve approximations, does not reduce to
LDA even for simple models, and has an intuitive yet rigorousobjective function. The most closely
related earlier work are IDA [6, 11] and NCA [4] which optimize a nonparametric conditional class
predictor; our use of a semiparametric predictor improves speed and robustness compared to IDA
and NCA.

3 Experiments

We evaluated the performance of our method (DCA-GM) on four standard data sets from the UC
Irvine repository (Wine, Balance, Ionosphere, and Iris). Each data set was split 30 times into training
(70%) and testing (30%) subsets. We implemented three linear supervised dimensionality-reduction
methods for comparison: LDA, LDA+Relevant Component Analysis (RCA; [18]) and NCA. In our
method we used a mixture of three Gaussians to model each class; we used K-means and LDA+RCA
to initialize the mixture and linear transformation, respectively. The performance of the methods was
evaluated by test accuracy of K nearest neighbor (KNN) classification (we use K=1).

The classification results on the test subsets are presentedin Figure 1. DCA-GM is comparable
with NCA which is considered to be the state-of-the-art. Forthese small data sets both NCA and

4A similar back-projection approach was used in [12], but only at the start of optimization.
5For any invertibled×d matrixB we havep(c|BAx; θ) = p(c|Ax; θ′) whereθ′ uses covariance matrices

B
−1

ΣcB
−1,T and theµ′

c,k, βc,k andαc are the same as inθ.



DCA-GM run fast and there is no significant difference in their running times; however, as stated in
the previous sections, DCA-GM has much smaller computational complexity than NCA. We plan to
run larger data sets later to show the difference.
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Figure 1: KNN classification accuracy on UCI data sets Wine, Balance (bal), Ionosphere (ion),
and Iris. Results are averages of test data results over 30 realizations of splitting each data set into
training (70%) and testing (30%) subsets. A linear dimensionality reduction down tod = 2 was
applied in all cases.

4 Conclusions

We have presented a fast method for finding subspaces where classes of data can be well discrimi-
nated. The method optimizes a well-defined criterion, performance of a semiparametric mixture of
Gaussians predictor for the classes. The method has linear complexity with respect to the number of
samples and performed as well as the state of the art NCA method on benchmark data sets. Here the
method was used in a simple fashion to compare examples, but we also mentioned more advanced
approaches for future work.
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