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Abstract

We propose a simple component or “topic” model for relational data, that is,
for heterogeneous collections of co-occurrences between categorical variables.
Graphs are a special case, as collections of dyadic co-occurrences (edges) over
a set of vertices. The model is especially suitable for finding global components
from collections of massively heterogeneous data, where encoding all the relations
to a more sophisticated model becomes cumbersome, as well as for quick-and-
dirty modeling of graphs enriched with, e.g., link properties or nodal attributes.
The model is here estimated with collapsed Gibbs sampling, which allows sparse
data structures and good memory efficiency for large data sets. Other inference
methods should be straightforward to implement. We demonstrate the model with
various medium-sized data sets (scientific citation data, MovieLens ratings, pro-
tein interactions), with brief comparisons to a full relational model and other ap-
proaches.

1 Introduction

Generative models for generic graphs try to find well-connected [11] or similarly-connected sub-
graphs [17], homogeneously connected blocks of vertices (e.g., [1, 4]), or a latent space explaining
the connectivity [3]. But data sets are often richer and better described as enriched graphs, where
additional properties are associated either to the edges or to the vertices, or both. From another
viewpoint, such data sets are multi-relational [6, 14], consisting of heterogeneous co-occurrences
between categorical variables: In the relational sense, graphs are co-occurrences (edges) within a
single categorical variable (vertices), while for example graphs with associated vertex data have an
additional co-occurrence type, between vertices and a nominal variable describing attributes of the
vertices.

We propose a simple component model for relational data. The component structure is global,
as in Latent Dirichlet Allocation (LDA) and other topic models, with no need to specify latent
structure except up to what is already apparent in the types of input data. The model is good for very
heterogeneous collections of relational data, where one is not able or willing to set up a complicated
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Figure 1: Plate representation for the graph model with nominal vertex data (Section 2.2).

latent structure. It can also be used as a quick-and-dirty model for enriched graphs, as demonstrated
in the experimental section.

The model generates relations, that is, co-occurrences, between nominal variables. It finds a global,
probabilistic component structure. Within each component, relations are generated from margin
probabilities of the nominal variables. All relation types arise from the same process, with the same
components.

The model is here introduced with the Dirichlet Process prior for the component probabilities, and
estimated by collapsed Gibbs. Although other inference methods might be either faster or produce
better results (mix better), the presented approach is both simple and implementable in a sparse form
[11] for very large data collections.

2 Global components for heterogeneous co-occurrences

Let the data D consist of independent co-occurrences Di, i = 1, . . . , N , that can (within a single
data set) fall into several co-occurrence classes described by Ci, i = 1, . . . , n(C). The structure
of the co-occurrences is heterogeneous, but fixed within a class C. A co-occurrence of class Ck is
a tuple of nominal values, (d(1), d(2), . . . , d(hk)), of size hk > 0. If hk = 2, the co-occurrences
are dyadic and presentable as a co-occurrence matrix or a graph. To each variable d we associate a
nominal variable type T ; the types differ in their domains. Then a tuple (Ta, Tb, . . . , Thi) of length
hi becomes associated to each Ci. The same variable type T may be shared by several nominal
variables d, even within one C.

Note that although the co-occurrences may often be dyadic, the model class includes triplets and
higher-order co-occurrences. It also includes independent events, but they are likely to be of less
use.

We assume the data are generated from latent components. A latent component z is drawn, from
a multinomial with parameters θ, for each co-occurrence Di. Given the component z for the da-
tum Di, and its class C, the nominal values d(t) are generated independently from the associated
multinomials, having the types Tt. (Figure 3 and Section 4 offer an example with two co-occurrence
classes and two nominal variable types.) Denote the parameters of the multinomials by ψ(t)

z . Note
that all multinomials of type Tt generated by the same component z share the same parameters ψ(t)

z ;
this is the assumption that ties the co-occurrences together.

We have conjugate priors in the model, a Dirichlet or Dirichlet process (DP) prior for the latent
components zi, and Dirichlet priors for ψ(t)

z . With the DP prior, the data are generated by
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1. θ ∼ DP(α); ψ(t)
z ∼ Dir(β(t)), t = 1, . . . , n(T );

2. For each i ∈ 1, . . . , N :
• zi ∼ Mn(θ);
• d(j)

i ∼ Mn(ψ(tij)
zi ), j = 1, . . . , hk(C(Di));

with the hyper-parameter α controlling the component diversity, and the hyperparameters β(t) the
evenness of the specific data type distributions. The index tij simply indicates that each d should
be generated from the multinomial (Mn) T to which it is associated via the description of the co-
occurrence class C(Di). The occurrence of classes C within D is not modeled—we have a model
only for the contents of an occurrence Di given its class Ci. That is, the amounts of data of the
various types are not modeled either.

All models of the model class can be easily estimated by collapsed Gibbs sampling [7], and the for-
mulas for sampling the latent classes of the various co-occurrence types are simple enough that they
can be derived automatically. Such a sampler gives only posterior samples of the latent member-
ships Zi of the co-occurrences; The parameters ψ and θ are marginalized out. The sampler proceeds
by removing one co-occurrence from the sampling “urn” at a time, then drawing a new assignment
z for the sample, given assignments of other co-occurrences. An example is presented below in
Section 2.2.

2.1 Example 1: Model for graph topology

A trivial case of an undirected graph with one object type, {C1 = (T1, T1)}, is described in [11].
The co-occurrences are edges of an undirected graph, with values of T1 being vertices.

2.2 Example 2: Model for graphs with nominal vertex data

Another example is a model for two co-occurrence types, {C1 = (T1, T1), C2 = (T1, T2)}, where
n(C) = 2. An interpretation is a graph with undirected edges (C1), and a categorical variable T2

generating vertex-specific properties (C2). The corresponding plate model is presented in Figure 1.

The sampling formulas for the two object types are1

p(z|Di) ∝
{nz, α}
N + α

×

{
g
(1)
z,l1

g
(1)
z,l2

/(g(1)
z,· (g

(1)
z,· + 1)) for Di ∈ C1 ,

g
(1)
z,l1

g
(2)
z,l2

/(g(1)
z,· (g

(2)
z,· )) for Di ∈ C2 .

All counts, g, n, and N , in the sampling formulas are with the object removed for which we are
drawing the latent component. The total number of objects is denoted by N , while nz is the number
of objects (co-occurrences) associated to the latent component z. The first factor arises from the DP
prior, with the case nz = 0 corresponding to a new component, and we define {nz, α} = α for
nz = 0, otherwise nz .

A matrix of counts g(t)
z,l exists for each type Tt, counting atomic events d assigned to a latent z.

The index l is over the bins of the multinomial ψ(t)
z . In the sampling formula associated to a co-

occurrence class Ck, the indices l1, l2, . . . , lhk
refer to the atomic events d within that type of co-

occurrence. Priors β are included in the counts g as virtual data. The dot notation is used for
summation.

In the general case of multiple object types, there is one sampling formula similar to those above for
each co-occurrence class, and the structure with the g counters closely follows the structure of the
object type.

3 Experiments

First, we demonstrate the ability of the model of Section 2.2 to find meaningful structure from
the Cora and Citeseer citation data sets [9]. We compare results obtained with full paper attribute

1We have assumed no self-links in C1, the citation network. If papers were citing themselves, g(1)
z,l2

in the

numerator of first formula would need to be g(1)
z,l2

+ δl1,l2 .
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Figure 2: In terms of perplexity, the subject categories of Cora and Citeseer citation sets are best
recovered with the model of Section 2.2, which is able to combine citation and content information
(“Combined”; lower perplexity is better). The other candidates are the model of Section 3 (“Netw.”),
and a similar model for the article content only (“Attr.”). The 2SE error bars are over ten runs.
The models are with Dirichlet priors that work well in cases with a known number of categories.
Note that the models are unsupervised—perplexities are not assumed to beat those from supervised
models. With a sparse implementation with Java (with some overhead from handling the sparse
data structures), the slowest model for Figure 2 ran in 1.25 hours, with a conservative number of
iterations (50,000) to assure convergence. The sizes of the Cora and Citeseer sets are 2708 and 3312
vertices, 5429 and 4732 edges, and 1433 and 3703 indicators for the existence of unique words,
respectively. At the time of writing this, the data sets, with more detailed descriptions, are available
at http://www.cs.umd.edu/˜sen/lbc-proj/LBC.html .
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Figure 3: The average confusion matrices between real and computed clusters of Citeseer. Left:
model for combined citation and content. Right: model for the citation information only. The model
for combined data recovers the original subject categories except for Artificial Intelligence (AI)
that is mixed with Machine Learning (ML) and Agents. Content information is helpful overall, but
especially in separating Information Retrieval (IR) from ML.

and citation data to those obtained with simpler models, seeing either the citation graph or vertex
attributes only. As expected, the rich data provides the best reconstruction of the original, manual
classification of the data sets (Fig. 2).

The second experiment is on collaborative filtering, or predicting ratings in the MovieLens data set
[8] on the basis of known ratings of other movies. Our model was compared to the IHRM [14, 15],
in a setting similar to that in [15, 16], with either some movie and user attributes included or not.
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Figure 4: Rating prediction accuracies for our simple relational component model (SRCM) and
IHRM of Xu et al. [15], either with data containing ratings only (rat) or with additional movie and
user attributes (att). The 2SE error bars are over ten runs. IHRM is better but the less complex SRCM
performs well too. Both methods have considerable variance between runs, that is, convergence to
a local area of the posterior mass. This experiment does not give evidence of any predictive benefit
from adding margin attributes of users and movies to either of the models, but see [15] which reports
a benefit from the attributes, for the IHRM. There were 702 users and 603 movies, with about 112
ratings per user (on average). Ratings were binarized, the threshold being user average. For held-
out users, 156 of the 702, twenty ratings were used to predict the rest, and the overall average
accuracy of these predictions is reported. In the attribute setup, year and genre of the movies, and
age, gender, and occupation of the users were added to the model as independent (movie, attribute)
or (user, attribute) co-occurrences.

The more complex IHRM performed better, but only slightly2 (Fig. 4). Both models outperform
classic collaborative filtering (by Pearson correlation or SVD; [15]).

In the third experiment, we combined protein interaction data with gene expression to find functional
gene modules. A simple relational model, modified to emit normally distributed vertex attributes3,
is able to better recover clusters derived from Gene Ontology [2] than two state-of-the-art methods,
HMoF [10] and Matisse [13], that both also integrate the protein and gene expression data sets
(Fig. 5).

4 Discussion

We present an infinite topic model for multi-relational data and demonstrate it at work with various
collections of data. Although the original motivation for the model is to find communities, or global
components, from enriched large social networks, the model is likely to be more widely applicable
to relational data. It could be especially suitable for clustering very heterogeneous collections of
relations, where defining a sensible latent structure a priori over all the variables would be hard.

2IHRM inference is with mean field, but difference in performance to Gibbs samplers is supposed to be
negligible [15].

3The gaussian response, although it fits the continuous data, does make the experiment less relevant for the
current paper, but we expect the results to replicate with a binomial or multinomial response.
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Figure 5: Perplexity of predictions of known functional protein complexes by combined protein
interaction and gene expression data, with our simple relational model (SRCM), and with HMoF and
Matisse (see text). The 2SE error bars are over 20 runs. The result was replicated for two expression
data sets (left, right). Smaller perplexity is better. The relatively small variation of SRCM results,
compared to other experiments in this paper, results from good mixing of the MCMC chains with
these smaller data set.

Experiments demonstrated the overall usability with enriched graphs, with two scientific citation
data sets. On a collaborative filtering task, the proposed model performed only slightly worse than
a state-of-the-art relational model. The lack of evidence of benefit from margin attributes in the
predictive task is interesting, especially considering the slight, ∼1% benefit reported by Xu et al.
[15]. This could be a statistical anomaly, given the large variation between runs. The tests should
also be replicated with more sparse rating data, including users now omitted. If the effect is real for
the proposed model, or for both models, behavior of users is then much more informative than static
margin traits, or a more discriminative modeling approach is needed to fully benefit from the more
’distant’ relational data in the model.

The good side of the proposed inference method is its technical scalability. If the counters g of the
collapsed Gibbs sampler are represented sparsely, the proposed inference method is highly scalable
with respect to the data set size and the number of components. The number of co-occurrence types
can be very high, even on the order of the data set size.

But collapsed Gibbs is known to mix poorly, especially for larger data sets, and this is apparent
also in the large deviations between single runs of our experiments. Mixing could be improved for
example by the stick-break sampler [5, 15], or by annealing. On the other hand, inference could be
made faster and deterministic by adapting a variational technique, such as the collapsed mean field
[12]. In pilot experiments, the model performance was sensitive to the order of magnitude of the
hyper-parameter values, at least that of β, in a data-set-specific way. Sampling of hyper-parameters
may help and is relatively easy to implement.
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