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Discriminative Components of Data
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Abstract— A simple probabilistic model is intro-
duced to generalize classical linear discriminant anal-
ysis in finding components that are informative of or
relevant for data classes. The components maximize
the predictability of the class distribution which is
asymptotically equivalent to (i) maximizing mutual
information with the classes, and (ii) finding principal
components in the so-called learning or Fisher metrics.
The Fisher metric measures only distances that are
relevant to the classes, that is, distances that cause
changes in the class distribution. The components have
applications in data exploration, visualization, and di-
mensionality reduction. In empirical experiments the
method outperformed, in addition to more classical
methods, a Renyi entropy-based alternative while hav-
ing essentially equivalent computational cost.

Index Terms— Component model, discriminant anal-
ysis, exploratory data analysis, learning metrics, mu-
tual information

I. INTRODUCTION

HE goal of this work is to learn discriminative com-

ponents of multivariate continuous data. Linear dis-
criminant analysis (LDA; [1], see [2]) is a classical method
for this task. The LDA components have traditionally been
used for classification, that is, discriminating the classes.
They construct Bayes-optimal class borders in the two-
class case, assuming the classes are normally distributed
and share the same covariance matrix.

Numerous alternative methods and generalizations have
been developed for classification. However, the LDA com-
ponents are additionally useful for describing and charac-
terizing class separation and the contribution of original
variables to it, and for visualizing the data. Our goal
is to generalize LDA as a component model for these
latter purposes, by removing the restrictive assumption
of normal distribution with equal covariance matrices in
each class.

Our view to why LDA-based visualizations are useful
is that discriminant analysis finds, intuitively speaking,
directions that are relevant to or informative of the clas-
sification. Relevance obviously needs to be defined more
exactly before it can be usefully applied. Our second goal
in this paper, besides generalizing LDA, is to define more
rigorously what it means for components to be relevant for
classes.

Mutual information is a natural measure of the (asymp-
totical) statistical dependency between two random vari-
ables, such as the primary data and their classes. Becker
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and Hinton [3], [4] suggested maximizing the mutual infor-
mation between two processing modules to model common
properties in their inputs; the common properties could be
interpreted as the relevant ones. Tishby et al. [5] formal-
ized relevance in a very closely related way as constrained
maximization of mutual information, using rate distortion
theory applicable to discrete data. A sample application is
clustering documents by the common occurrences of words
in them [6].

Torkkola [7], [8] optimized projections by maximizing
mutual information, to produce a discriminative feature
transformation. Instead of the standard mutual informa-
tion based on Shannon entropy, however, he used Renyi
entropy. Renyi-based formalism using formulas from [9],
[10] was claimed to be more suitable than the traditional
Shannon entropy since it avoids computational difficulties.

In this paper we generalize linear discriminant analysis
by extending this line of work about maximizing mu-
tual information. We introduce a very simple generative
model that can be optimized using standard machinery
of probabilistic inference, instead of resorting to infinite-
data formalisms based on either Shannon or Renyi entropy.
The obvious problem with such entropy-based formalisms
is that probability distributions need either be assumed or
estimated. The proposed model asymptotically maximizes
Shannon mutual information, and its computational cost
is essentially equivalent to the Renyi-based alternative,
suggesting that switching to Renyi may be unnecessary.
The relative goodness of the alternatives is investigated
empirically.

In summary, the main advantages of the proposed model
are that it is very simple and consistent with both of the
relevant traditions: generative (predictive) probabilistic
modeling and modeling relevant (discriminative) prop-
erties of data by maximizing mutual information. The
components are relevant to the classes in the sense of being
predictive or informative of them.

The remaining objective is to justify why the model
is useful as a component model for characterizing and
visualizing class separation and the contributions of the
variables to it. This is done through a connection to still
another formalism, the learning metrics principle [11], [12],
which uses information-geometric methods to construct
(Riemannian) metrics to the data space. Distances cor-
respond to class changes; assuming the classes are here
relevant, this is then precisely the metric that measures
the relevant differences. We sketch a connection to show
that the proposed model can be asymptotically interpreted
as principal component analysis in the learning metrics.

The components are expected to be useful for reduc-
ing the dimensionality for visualization, exploration, and
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interpretation of the primary data, or alternatively as a
preprocessing transformation for further analysis.

II. THE MODEL

The learning data consists of pairs (x,c), where the
primary data x are multivariate samples from the vector
space R”. In this work the auxiliary data c are categorical
(multinomial), attaining one from a set of N, unordered
values, the classes. The two key assumptions are that
(i) analysis of the primary data is of the main interest,
and (ii) the classification has been chosen properly such
that variation in the primary data is assumed relevant or
important only to the extent it causes changes in the c.

We search for dimensionality-reducing transformations
of the primary data to smaller-dimensional vectors y =
f(x), y € R? In this paper the transformation is linear,
f(x) = WTx, where W is the orthogonal transformation
matrix to be optimized. The columns w; of W are the
basis vectors of the reduced-dimensional space that is a
subspace of the primary data space. The basis vectors
decompose the data into components w!x. Note that the
transformation as such does not depend on the auxiliary
data. Hence, once it has been optimized, it can also trans-
form new primary data without known auxiliary data.

A. Objective function

The goal is to find a transformation that makes the sub-
space as informative as possible of the classes. Assuming
the classification defines what is interesting or important,
the columns of the estimated transformation matrix W
represent the ‘informative’ components of the primary
data.

Informativeness will be measured by predictive power,
by constructing a generative probabilistic model of ¢
given the projected value f(x), and maximizing its log-
likelihood. The model then has a well-defined criterion for
fitting it to finite data.

The generative model predicts the distribution of ¢
based on the projected value; the prediction is denoted by
p(c|f(x)). The log-likelihood of the model for the paired
data {(x,c)} is

L=")"logp(clf(x)) (1)

(x,¢)

where f(x) = WTx are the coordinates of the points in
the linear projection subspace. The function L is to be
maximized with respect to the projection matrix W. In
case parametric estimators of p are used, their parameters
need to be optimized as well. Any parametric or non-
parametric estimator can be used; the relative goodness
of different estimators can be measured with standard
methods of probabilistic model selection. The crucial thing
is that the prediction is made after the projection. In this
paper we use non-parametric Parzen estimators.

The basic model generates the classes ¢ but not the x,
that is, the x are treated as covariates. In other words,
the model predicts ¢ based on x. That is why we will
alternatively call the model ‘predictive’.

B. Optimization

To optimize the projection we need an estimator for
p(c|f(x)), the conditional probabilities of auxiliary data in
the projection space. Given the estimator, the likelihood
(1) can then be optimized with any standard non-linear
optimization algorithm; in this paper we use stochastic
approximation. We will next derive the algorithm for the
specific choice of a linear function f and a general class of
estimators p, including non-parametric Parzen estimators.

1) Estimation of conditional densities: In this paper we
use standard Parzen estimators with Gaussian kernels for
p(c|f(x)); other estimators could be used as well. Since
the algorithms can be easily formulated in a way that is
applicable to mixtures of Gaussians as well, we use the
more general formalism here. The estimates are of the form

A __ Gx),9)

p(C|f(X)) - ZC/ G(f(X,C/)) (2)
where G is a weighted sum G(f(x),c¢) =
Z%Zl Ymeg(f(x), m) of M spherical Gaussian kernels

1

— x)—f(r, 2 0_2
g(f(x),m) = We( IEGI~£0em)IIP/26%) —(3)

The number of kernels M, the width o of the Gaussians,
the location parameters r,, and the weights v,,. are
parameters to be optimized. The weights must satisfy
0 < ¥Yme <1 and Zm,cwmc =1.

Notice that the probability (2) is calculated in the
projection space; the values of the Gaussians (3) depend
only on projected coordinates f(x), and the Gaussian
centers f(r,,) are defined by projection from data space
parameters r,,.

Both Parzen-type estimators with Gaussian windows
and mixtures of Gaussians can be expressed with (2).
For a Parzen-type estimator the probabilities are directly
based on a learning data set {(x;,¢;)}Y.; where the x; are
the primary data and the ¢; the auxiliary data. Parzen
estimators result from setting M = N, weights ¥, =
d¢,,.c/N, where o, . is one if ¢,,, = ¢ and zero otherwise,
and for the locations r,, = x,,. The only free parameter is
then the width o of the Gaussians which we will optimize
using a validation set.

For a mixture of Gaussians, M can be either preset or
validated. The ,,. and the r,, are to be optimized, and
o is either optimized or validated.

An advantage of nonparametric Parzen-type estimation
is that there is no need to separately re-estimate while
optimizing the projection. Since the Gaussian centers are
formed of projected primary data points the estimate is
defined by the projection, and the optimization is capable
of accounting for the changes in the estimate. While
mixtures of Gaussians can be fast to compute, they need to
be re-estimated when the projection changes. See Section
VT for a discussion on how to combine optimization of both
the density estimate and the projection. A further advan-
tage of Parzen-type estimation is that it is a consistent
estimator of the conditional density [13]: as the number
of data points grows and o decreases, the conditional
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estimate approaches the true value. The disadvantage is
the long computation time for large data sets; using only a
subset of data will help reduce computation time, however.
In the experiments we have used Parzen-type estimation.

2) Optimization of the projection by stochastic approz-
imation: In this paper stochastic approximation is used
for optimizing the likelihood (1) of the projection f(x).
Stochastic approximation is applicable to objective func-
tions that are averages of another function. Here the
average is taken of L(x,c¢) = logp(c|f(x)), that is, over
the discrete distribution of the paired samples:

1 1
W) =+ > Lx,aW).
(x,0)
Under certain mild assumptions [14] L can be optimized
by iteratively moving towards the sample-specific gradient.
At step t the update is
OL(x,c; W)
oW

The step size has to fulfill the conditions ) a(t) = co and
>~ a?(t) < oo. In practice the number of steps is finite and
only an approximation to the optimum is obtained.

The details of deriving the gradient are given in Ap-
pendix A. The result is

W(t+1) = W(t) + a(t)

0 T
8—WL(X7 W) = (Bemigx){(x — ) (x — 1) " }
W

= Be(mit .0 {(x = 1) (x = 1) T}) =5
- % (Eemlt oy {(x = 1m) (£(x) — £(rn )"}
— Bemitx).0{(x =) (£(x) = £(rn))"}) . (4)

This is a difference between two cross-correlation-like
matrices, one conditioned on the auxiliary data and the
other without it. If the auxiliary variable brings no ex-
tra information the matrices are equal and the gradient
is zero. Above, the operators Eg(mir(x)) and Eg(m|e(x),c)
denote weighted sums over mixture components m, with
respective weights

Zc/ VYme g(£(x), m)
Zk Zc’ Ve g(£(x), k)

Ymeg(f(x), m)

R SRR TGENIR ©

The weighted sums are functionally similar to expectations
over conditional distributions of m. We do not, however,
assume a generative model for the primary data, and the
weights need not correspond to a maximum likelihood
probability estimate.

For Parzen-type estimation, the stochastic samples
(x,c) and the Gaussian components may be derived from
the same dataset. We have additionally incorporated a
minor improvement: if the stochastic sample has index m/,
exclude this index from the sums over m and k in (4), (5)
and (6). This results in a kind of implicit leave-one-out
validation during learning: the class prediction at sample
m/ is based on the other samples and their class labels, but

{(mlf(x)) = and  (5)

not on the class label of m/ itself. That is, m’ is considered
‘new data’ in the prediction. Such leave-one-out prediction
within the learning data set partially prevents overfitting
the projection; without it, the classes of isolated samples
would be ‘perfectly predicted’, i.e., fully overfitted. The
similar adjustment does not affect the update step of the
comparison method MRMI.

3) Orthogonality by reparameterization: The gradient
update rules of the previous section do not yet enforce
the projection matrix to remain orthonormal.

Theoretically, whether the projection is orthonormal or
not has no effect on predictive power: if two projections
span the same subspace, conditional probabilities after
both projections converge to the same values at the large
sample limit (for consistent estimators).

In practice, if the objective function were based on
an overly rigid predictor, it might not predict well from
a non-orthonormal projection where the data might be
‘stretched’ along some directions. Moreover, orthonormal-
ity is desirable to avoid unnecessary free parameters,
and possible bad local minima (such as all components
converging to the same value).

A straightforward way to enforce orthonormality is to
reparameterize the matrix by the so-called Givens rota-
tions. A similar reparameterization was used in [7]. In
an orthonormal projection there are (n — d)d rotation
parameters (angles), where n is the original dimensionality
and d is the projection dimensionality. This reduces the
number of parameters compared to optimizing the nd
elements of the projection matrix directly.

The reparameterization is

d

w=w,|[I| I] G

i=1 \j=d+1

W,

where Gy is a rotation matrix in the ij plane by an angle
Aij, that is, its elements (4,1), (4,7), (4,¢) and (j,7) form
a standard two-dimensional rotation matrix by
G”(Z,’L) GU(Z,]) :| _ |: COS()\ij) szn(/\”)
Gij(4,1) Gi(4.4) | [ —sin(Aij)  cos(Aij)
and the other elements of G;; are from an identity matrix.
The matrix products are written out first term leftmost,
ie. H;L:dﬂ Gij = Gia41 - - G4p. The Givens repa-
rameterization ensures that W is orthogonal at all times.
The angles are initially zero, and Wy is an initial rotation
matrix. The last matrix W; simply selects the first d
components after the rotations.
The gradient of a single rotation matrix G;; with respect
to A;; is a zero matrix except for elements (3, ¢), (4,7), (J, %)
and (j,4), for which

9 GU(ZJ) Gl](laj) :|
a>\1] Gij (.]a Z) G'L'j (.]7 .7)
_ { —sin(Aij)  cos(Nij)

—cos(Nij)  —sin(Xij)

For brevity, let us use a single rotation index for the angles
and corresponding matrices: G,, = Gg; and A, = Ay,
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where m = (i — 1)(n — d) + j — d. With this notation, the
(stochastic) gradient of a rotation angle can be shown to
be

8 8L awkl
—L(x,¢; W)
Ty Lo Z Dt O
0
- {aw W),
d(n—d)
0G,
W0<HG>(8/\> 4H G | W, (7)
i=m-+1 Kl
where [...]x; denotes the element (k, 1) of the matrix inside

the brackets.

A simple alternative to Givens rotations is to simply
optimize the elements of the projection matrix directly,
and orthonormalize the projection after each update. This
technique has been used in [8]. However, this method does
not reduce the number of parameters to optimize.

Note that the projection can be easily extended by
adding scaling after rotation: simply replace W1 by W1 A
where the diagonal matrix A contains the scaling param-
eters. This leads to (n — d + 1)d parameters to optimize,
still less than nd when d > 1.

As discussed above, non-orthonormality like scaling does
not affect predictive power. However, it can affect practical
optimization with the Parzen estimator, since scaling effec-
tively changes its resolution in different directions. In some
situations this might help but the extra parameters might
complicate optimization. We did not use scaling in the
experiments (scaling parameters were set to 1). Instead,
the resolution of the Parzen estimator was controlled with
the o parameter; in the empirical tests (Section V), this
was sufficient to yield good results.

4) The algorithm: The parameters of the method can
be simply optimized with standard gradient methods,
such as conjugate gradient or stochastic gradient. Here
we use the latter method. We present its details here for
completeness.

The stochastic approximation update step is as follows:
at iteration ¢, pick a sample (x, ¢), and adjust the rotation
angles by

= A\ (t) + oz(t)iL(x7 ;W) . (8)
OAm,
We used piecewise linear schedules for the «(t).

The on-line algorithm for optimizing the projection is
summarized in Fig. 1. Steps 3(b) and 3(c) and Equation
(4) are the ‘core’ of the algorithm; the more complicated
equation (7) simply accounts for the reparameterization.
The time complexity of each iteration is O(N) with respect
to the number of samples N.

5) Initialization: The algorithm is based on (stochastic)
gradient optimization, and hence may find only a local
optimum, depending on the initialization (and the random
presentation order of data). The Renyi-based comparison
method in Section IIT also has this problem. Multiple
restarts from different initializations could be used to

Am(t+1)

1) Choose the initial rotation Wy, for example by
orthonormalizing an LDA projection.

2) Choose the width ¢ for the Gaussians (ultimately
with a validation set), and a schedule (piecewise-
linear decreasing function) for the learning rate.

3) Repeat the following steps (for a set number of
iterations):

a) Sample an input (x,c¢) from the data.

b) Compute component weights £(m|x) by (5) and
£(mlx,¢) by (6).

¢) Compute the stochastic gradient aiwL(x, c; W)
for the projection matrix by (4).

d) Compute the gradients for the Givens rotation
angles by (7).

e) Adjust the angles by (8).

Fig. 1. Algorithm for optimizing the cost function (1) in Section II-A
with Parzen estimators or other Gaussian mixture-based probability
estimators.

avoid local maxima. In this paper, we used a simple
alternative: we initialized the first components of W by
orthonormalizing an LDA projection (LDA does not give
a full basis; the remaining components were filled with
orthonormal vectors).

In contrast, LDA and PCA find the global optima of
their cost functions. Nevertheless, in the empirical tests in
Section V the proposed method with the on-line algorithm
achieves better results.

III. COMPARISON METHOD: TRANSFORMATION THAT
MAXIMIZES RENYI ENTROPY-BASED MUTUAL
INFORMATION

Torkkola and Campbell [7] have introduced a method,
denoted here by MRMI for Maximization of Renyi Mutual
Information, that is closely related to ours. Both methods
search for a linear projection that maximizes mutual in-
formation between the features and class labels. The main
difference is that instead of Shannon entropy, Torkkola
and Campbell use Renyi quadratic entropy in defining the
mutual information. The work is based on earlier ideas
about Renyi entropy-based feature extraction [9], [10].

The second difference is in the estimation of the projec-
tion. We define the model for finite data as a generative
(conditional) probability density model, which makes it
possible to rigorously use the machinery of probabilistic
inference. The connection to mutual information is asymp-
totic, which in our opinion is natural since mutual infor-
mation is defined in terms of the (unknown) distributions.

By contrast, in MRMI an estimator of the projected
joint density of the data is constructed, and the estimated
mutual information of the projection and the class distri-
bution is maximized. Parzen and Gaussian mixture esti-
mates were used in [15]. The possible theoretical problem
with this approach seems to be that the cost function
used for estimating the density is not directly related to
the overall modeling goal, that is, maximization of mutual
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information. For Parzen estimators this problem does not
occur, however.

In the experiments of Section V, our method is com-
pared to other projection methods including MRMI. We
optimized both the proposed method and MRMI in the
same way to make sure differences in optimization algo-
rithms do not cause differences in results. Parzen estima-
tors are used to estimate the densities, and the projection
is parameterized by Givens rotations. For MRMI, this
leads to an algorithm similar to the one in Fig. 1. The only
difference is that the gradient 5 =2 aw L(x,¢; W) in steps 3(b)
and 3(c) of the algorithm will be replaced by the following
gradient (see Appendix B for details):

0

—L W
oW MRJ\II(Xa C; )

= 2NZG
cck+2p

x)|f(xx), o°T)

—2p(c) | (x —xp)(F(x) — f(xx))" .
9)

Here (xg,cr) are the data samples used in the
Parzen estimator, p(c) = + 25:1 de.cr, and
G(f(x)|f(xx),0°T) is the value at f(x) of a d-dimensional
Gaussian distribution with mean f(x;) and covariance
matrix ¢2I. The other quantities are defined as in Section
II-B. Like the algorithm for the proposed method, this
algorithm for MRMI also has a time complexity of O(N)
per iteration with respect to the number of samples N.

Note that all terms in the gradient (9) are directly
proportional to absolute values of Gaussian functions.
These can get very low values if the sample x is pro-
jected far from any neighboring points, especially when
the projection subspace is high-dimensional. Therefore,
the (initial) learning rates o and values of o need to be
chosen carefully to ensure meaningful parameter updates.
To ensure this, in the experiments the ¢ and the initial
learning rate were validated from a wide range of values;
see Section V-C for details.

IV. RELATIONSHIPS TO OTHER METHODS

When described as a predictive model of the class
distribution the proposed model is extremely simple, which
we consider to be one of its main assets. It is relatively
straightforward to apply the machinery of probabilistic
inference to it. The usefulness of the method, however,
comes from its relationships to other theories and models
which suggest ways of using it. These connections will be
presented in this section: Relationships to the theory of
maximization of mutual information and learning metrics,
interpretation as generalized linear discriminant analysis,
and relationships to a few other component models.

A. Regression

Regression methods aim to model the variation in a
regressed function with a specified group of regressors.

The proposed method can be viewed from a regression
point of view as well. However, in this context it is an
unconventional solution since we are interested in finding
components of data, not merely predicting. The likeli-
hood cost function is also unconventional for standard
regression, compared to for instance squared error min-
imization. Many regression methods such as projection
pursuit regression and two-layer neural networks make
restrictive assumptions about the relation between the
regressors and the regressed function. By contrast, we use
a nonparametric estimator which leads to less restrictions.

Several linear methods such as canonical correlation
analysis (CCA) and partial least squares (PLS) have been
used in this task. When the values to be regressed are
classes, the most appropriate of these linear methods is
LDA.

Recent regression methods include sliced inverse re-
gression (SIR; [16]), principal Hessian directions (pHd;
[17]) and sliced average variance estimation (SAVE; [18]).
When classes are used for the regressed function, SIR is
effectively equivalent to linear discriminant analysis LDA,
except for predictor scaling [19]. In Section V we compare
the proposed method with other methods including LDA.
For pHd the regressed function must be one-dimensional,
and we are not aware of multivariate pHd extensions.
Therefore pHd is not suitable for cases where there are
over two (unordered) classes. SAVE has been included in
the comparisons. It effectively searches for the subspace
corresponding to quadratic discriminant analysis (QDA)
[19]. Tts problem is that it may miss linear trends [19],
[20].

B. Mazimization of mutual information

It is straightforward to show that the objective function
(1) has an asymptotic connection to the mutual informa-
tion. This connection is not specific to the present model
and is probably already known. As the amount of data N
increases (here y = f(x)),

—L—>

N N_)OOZ/ ¢, x) log p(c|f(x))dx
= c o 7(’ )
—;/m )1 gp(C)p(y)dy

ey
Zc:/p( ¥)log 2 s dy

= I(C)Y) = Epy)[DrL(p(cly), plely))] (10)

(The constant 1/N on the first line has no effect on
optimization.) The first term on the last line is the
(true) mutual information between the auxiliary variable
C having the values ¢ and the projected primary variable
Y having the values y. The second term is the average
estimation error of the auxiliary data after the projection.
The term H(C'), the entropy of C, is constant.

Hence, maximization of the objective function of the
generative model (1) is asymptotically equivalent to max-
imizing the mutual information and simultaneously min-

H(C)

—H(C).
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imizing the estimation error. The estimation error van-
ishes asymptotically for consistent estimators such as the
Parzen estimators. For non-consistent estimators straight-
forward maximization of mutual information would ne-
glect the estimation error.

The implication is that for large data sets and consis-
tent density estimators the proposed model follows the
tradition of maximizing mutual information [3]-[5]. For
small data sets the infinite-data formalisms do not ensure
good generalization, however, whereas the likelihood for-
mulation makes it possible to apply all the machinery of
probabilistic inference.

C. Linear discriminant analysis and canonical correlation
analysis

In classical linear discriminant analysis (LDA [1]; see
e.g. [2]), each class is assumed multinormally distributed
with the same covariance matrix in each class. For a
two-class problem the direction in the data space that
maximizes the within-class variance while minimizing the
between-class variance is sought. The solution can be
found by estimating the within- and between-class co-
variance matrices, and it is asymptotically optimal for
classification if the assumptions hold.

The solution can be generalized to multiple classes, by
still maximizing the between-class variance and minimiz-
ing within-class variance. The first ‘canonical component’
corresponds to the direction in which the multiple correla-
tion with the groups is the largest. The second component
has the next largest correlation while being uncorrelated
with the first, and so on. This method is sometimes called
multiple discriminant analysis or canonical discriminant
analysis. When the assumptions of LDA hold, only the
N, —1 first components help in discriminating the classes,
where N, is the total number of classes.

There is a direct connection between LDA and canonical
correlations, a method that has been shown to maximize
mutual information for multinormal data. In canonical
correlation analysis there are two multivariate samples and
pairs of directions, one of each pair in each space, are
sought. The goal is to maximize the correlation between
the projections. The first pair maximizes it, the second
maximizes the correlation constrained to being uncorre-
lated with the first, and so on. It can be shown that linear
discriminant analysis is equivalent to canonical correlation
analysis if the class variable is encoded in the 1-out-of-N.
manner, that is, each class has its own dimension, and the
value of the dimension is 1 if the sample belongs to the
class, and 0 otherwise [21].

Canonical correlations have a close relationship to mu-
tual information. If both paired samples are multinormally
distributed—actually even elliptical symmetry suffices—
canonical correlation analysis maximizes the mutual in-
formation between the paired variables [22].

Although canonical correlations are closely related to
linear discriminant analysis, to our knowledge no gen-
eral relationship between LDA and mutual information is
known.

In summary, LDA is a well-established way of finding di-
rections that best discriminate multinormally distributed
classes. In this paper we discard the parametric assump-
tions about the distribution of the classes, and estimate
the densities nonparametrically. The second advantage is
that density estimation in the reduced-dimensional space
suffices.

Relationship to the proposed method. If the classes are
multinormally distributed, our method finds the same
projection as LDA, at least under two additional assump-
tions. In addition to the assumption that all classes have
the same covariance matrix, it is required that (i) the
class centers reside within a d-dimensional subspace of the
original space, if a d-dimensional projection is sought, and
(ii) there is enough data, i.e., the result is asymptotical.

The proof is simple with these assumptions; a sketch
is presented here. It is known (see for example [23]) that
LDA is equivalent to maximizing the likelihood of a joint
density model for the data and the classes, in the original
primary data space. Each class is modeled by a separate
Gaussian density. It is then straightforward to show that
the conditional class density p(c|x) of the optimal LDA
model (and asymptotically of the data as well) is constant
in all directions orthogonal to the d-dimensional subspace
containing the class centers. This can be seen by factoring
the density into two terms; the first term depends only
on the important d dimensions and the second only on
the other dimensions. Our method, by comparison, builds
a model p(c|f(x)) for the conditional distribution that
only varies within d dimensions, and the optimal solution
clearly is to match them to the dimensions where the
densities really vary. The correct solution is reached if the
probability estimator p(c|f(x)) is asymptotically capable
of finding the true distribution within the projection space,
which holds at least for the nonparametric estimator we
have used.

Incidentally, since our method asymptotically maxi-
mizes mutual information, the proof implies that classical
LDA maximizes it as well under the restrictive assump-
tions above. Note that the proposed new method does not
need the assumptions.

Furthermore, this means canonical correlations max-
imize mutual information also in the non-multinormal
case, with 1-out-of- NV, class encoding and the assumptions
above.

Several generalizations of LDA have been proposed,
including heteroscedastic discriminant analysis (see, e.g.,
[24], [25]) in which the classes are allowed to have different
covariance matrices. There do not exist as close connec-
tions between our proposed method and these generaliza-
tions. The key difference, in our opinion, is that whereas
LDA-based methods make parametric assumptions on the
joint density of the data and the classes, the proposed
method only requires a (nonparametric) estimate of the
conditional density.
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D. Principal component analysis

Principal component analysis (PCA; see, e.g., [2]) is
discussed here because it has a close connection to the
proposed method. PCA searches for a linear transforma-
tion y = WTx to a lower-dimensional space, such that the
average Euclidean reconstruction error

/dZE(X7 WWx)p(x)dx (11)

resulting from representing data in the projection space is
minimized. Here d% is the squared distance between the
reconstruction WW7'x and the original point x and W is
the n X d matrix consisting of orthonormal basis vectors.
The cost is minimized by calculating the covariance matrix
of data and choosing the basis vectors to be its eigenvectors
corresponding to the largest eigenvalues.

E. Learning metrics

The learning metrics principle ([11], [12], [26]; see also
[27], [28]) suggests using information-geometric [29], [30]
methods to learn metrics to a data space. Information
geometry defines so-called Fisher metrics to the parameter
space of a generative probabilistic model. When learning
metrics, the coordinates of the primary data space are
regarded as parameters of a generative model that predicts
the distribution of auxiliary data; in this paper the classes
are the auxiliary data.

The class labels then implicitly define what is important,
and the analysis is focused on the important aspects. For
instance, if an input variable has no effect on the class
distribution, it does not affect the distance in the new
metric.

Distances dy, in the learning metric are defined in terms
of the conditional distributions of auxiliary data: local
distances are Kullback-Leibler divergences Dy between
the distributions, expressible as quadratic forms with the
Fisher information matrix J(x),

d% (x,x + dx) = Dgr(p(c|x), p(c|x + dx))
=dxTI(x)dx (12)

where

J(x) = Epex) { (a% 10gp(6|><)> (3% logp(CIX))T}

and global distances are minimal path integrals of the local
distances.

The learning metrics principle is defined in (12) in terms
of known distributions p(c|x). In practical data analysis
there is seldom enough data to estimate the distributions
accurately and the principled way of applying learning
metrics, taken in this paper as well, is slightly more compli-
cated. We define a generative model that can be optimized
with well-defined machinery of probabilistic inference. We
then show that the model asymptotically has a connection
to the learning metrics principle.

The connection to learning metrics here is that the
proposed method has an (asymptotic) interpretation as

a component model, with the cost function expressed in
learning metrics. The cost function is analogous to the cost
of principal components analysis, discussed in Section IV-
D.

The cost is the average reconstruction error. The re-
construction r(f(x)) of f(x) is defined as a point in the
primary data space that projects to f(x) and where the
class distribution best matches that of the projection,
by the Kullback-Leibler divergence. The reconstruction
error is measured between it and the original data x. The
reconstruction is defined only to provide an interpretation
of the method; in practice data can be projected without
knowing the reconstructions.

To be precise the connection is that the mutual infor-
mation in (10) equals (with certain approximations; see
Appendix C)

I(C)Y) = Z /p(c,y) log p(c|y)dy + const.

~ / ()2 (x, £(£(x)))dx + const.

where the right-hand side is an average squared distance
dy, from samples x to their reconstructions r(f(x)). There
are two differences from the PCA cost function (11).
The main difference is that the error is measured in
the so-called learning metrics. An additional difference is
that the reconstruction is defined implicitly as a kind of
missing value problem: the coordinates orthogonal to the
projection subspace are reconstructed by finding the pro-
jected point with the smallest Kullback-Leibler divergence
between the auxiliary distributions at the point and the
projection.

Another difference is that PCA components can be com-
puted one by one using an on-line algorithm. By contrast,
our method searches for the whole set of components at
the same time, and the components change if their number
is changed.

For good enough (that is, consistent) estimators p the
second term in (10) asymptotically vanishes. Hence, op-
timizing the proposed cost function (1) is asymptotically
approximately equivalent to minimizing the reconstruction
error of principal components analysis, measured in learn-
ing metrics.

V. EXPERIMENTS

In this section we compare the proposed new projec-
tion method to the two other most closely related linear
projections, the Renyi entropy-based MRMI and linear
discriminant analysis. PCA is also included to provide
a baseline; unlike the other methods, PCA does not use
auxiliary data.

The aim of the experiments is threefold: to measure
quantitatively how well the new method performs; to
compare the projections qualitatively; and to demonstrate
how to use the components in practical data analysis.
Quantitative comparison of visualization and exploratory
capability of methods is very hard and we have to resort
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TABLE 1
STATISTICS OF THE TEST DATASETS.

Number of Number of
Dataset Dimensionality classes samples
Landsat 36 6 4435
LVQ_PAK 20 13 3656
Isolet 30 26 3742
MFeat 76 10 1500
TIMIT 12 41 14994

to indirect measures; we will make sure, however, that the
comparisons between the proposed method and the Renyi-
based alternative are not biased.

A. Data

We compared the methods on five real-world datasets
whose properties are summarized in Table I. The Landsat,
Isolet, and Multiple Features (MFeat) data sets are from
UCT Machine Learning Repository [31], LVQ_PAK refers
to the Finnish acoustic phoneme data distributed with the
LVQ-PAK [32], and TIMIT refers to phoneme data from
the Darpa TIMIT acoustic phoneme database [33].

The datasets were first preprocessed. The dimension-
ality of the Isolet data was reduced to 30 by a PCA
projection to reduce the computational load of the pro-
posed algorithm and the MRMI. The Multiple Features
data contained several different types of features, of which
Fourier coefficients were selected. The LVQ_PAK data
were used as is.

For four of the datasets, we sought a projection to 5
dimensions. As an exception, a three-dimensional projec-
tion was sought for the Landsat dataset since it contains
only six classes. In general, the projection dimensionality
should be chosen large enough to make interesting findings
possible, and yet small enough to give understandable
results. Here we chose (arbitrarily) a 5-dimensional pro-
jection; the effect of the dimensionality on the results will
be studied in Fig. 3, and methods for choosing ‘optimal’
dimensionality will be studied later.

B. Quality measure

A fair performance measure is needed to compare the
methods. It cannot of course be the objective function of
any of the methods. Since all aim to be discriminative we
chose the classification error, measured for the simple non-
parametric K nearest neighbor (KNN) classifier, working
in the projected space. Since both the proposed method
and the MRMI comparison use non-parametric kernel-
based estimates, the measure does not favor either method.
Note that minimization of the classification error is not the
primary goal of any of the methods; the results give only
indirect evidence.

To be precise, results were evaluated by projecting the
test set and calculating a KNN classification for each test
sample from K = 5 neighbors selected from the projected
learning set. The classifier predicted the class having a

majority within the neighbors. The resulting classification
error rates of all models were then compared.

Ties were broken by assigning equal portions of the tied
sample to all tied classes. If the sample belongs to one of
the tied classes, this yields ‘partial’ classification error, for
instance 4/5 if there were 5 tied classes. If the sample is
from none of the tied classes, a ‘full’ classification error of 1
occurs. The result equals the expected classification error
when the class is picked randomly from the tied classes.

Note that in principle the internal density estimates
of the proposed method and MRMI could be used for
classification; however, such nonlinear classifiers cannot be
derived from PCA and LDA. Using a single classification
method ensures that performance differences result from
the quality of the projection, not of the classifier.

C. Experimental set-up

The experimental set-up for the quantitative compar-
ison required three steps. Ultimately, we compared the
methods by cross-validation experiments on the 5 data
sets. In order to reduce the computation time we chose
the width of the Gaussians ¢ beforehand, in preliminary
experiments, using a validation set. The same was done for
the initial learning rate «. Of the four comparison meth-
ods, the new algorithm and MRMI have these parameters;
LDA and PCA have no adjustable parameters.

It turned out that MRMI is very sensitive to the choice
of these parameters. Hence, to make sure that we did not
give unjust advantage to our method, we had to start by
first choosing a proper range for the parameter values.
The best value from this range was then chosen using the
validation set.

In all of the experiments, both our method and MRMI
were computed for 20,000 stochastic approximation steps,
starting from an LDA initialization. During the computa-
tion, the learning rate was decreased piecewise linearly to
Zero.

1) Choosing the range of parameter values for valida-
tion: Each database was initially divided into a training
set and a validation set (of about a third of the data) that
were used to choose the range for the parameters.

Again, to save computation time, the range for the
initial learning rate o was chosen based on only one of
the data sets, the LVQ_PAK data. Each potential value
was tried with a range of ¢ values, and the minimum
a-specific classification error on the validation set was
sought. New (smaller or larger) o values were then tried
until a local minimum of classification error was found.
The resulting set of a values was then used in all the
subsequent experiments, for all data sets.

For our method, a less elaborate scheme was used: the
range of a values was simply hand-picked for LVQ_PAK
data instead of validated.

For each data set, the range of o values was logarithmic,
starting from roughly the root mean squared distance
from a point to its nearest neighbor, and extending to
the average distance to the furthest neighbor. For some
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data sets more (larger or smaller) values were added
approximately logarithmically, in case a local maximum
was not found within the default set.

2) Choosing parameter values by validation: When the
ranges of a and o had been validated, the values within
the range that gave the best values for the validation set
were chosen.

3) Cross-validation tests: Given the values of « and o,
the methods were then compared with a cross-validation
test.

The data was re-divided into ten sets, and in each fold
of cross-validation one of the ten was used as test data and
the other nine as learning data. The projection matrix was
optimized with the learning data, and the performance was
measured on the respective test set.

D. Quantitative comparison

The statistical significance of the difference between
the best and the second best method was evaluated for
each data set by a t-test of the 10-fold cross-validation
results. Table IT shows the average performances across the
folds, and for completeness the p-values of the differences
between all methods.

Our method achieved the best average result for four
of the five data sets. The difference between our method
and the second best method was significant for three of
the sets.

For Landsat data, our method was surprisingly bad,
possibly due to overlearning resulting from a poorly cho-
sen parameter value. MRMI was the best here but the
difference to the second best (LDA) is not significant.
For the LVQ_PAK data set, our method was significantly
better than the second best (PCA), and the rest had
similar performance. For Isolet data our method achieved
significantly better results than the second best (LDA).
LDA was closely followed by MRMI and PCA had the
worst results. For the Multiple Features (MFeat) data set,
our method was significantly better than PCA. The others
did not seem to outperform PCA. For TIMIT data, our
method was the best but the difference was not significant.

SAVE was the worst on all of the five data sets: the aver-
age error was 68.2 percent on Landsat, 18.5 on LVQ_PAK,
73.6 on Isolet, 62.0 on MFeat and 62.8 on Timit. The p-
values of t-tests of the difference to other methods were
less than 0.01 on all sets.

Our hypothesis for the poor Landsat performance of
our method is that the ¢ and a parameters were badly
chosen: their good performance in the parameter vali-
dation stage was likely due to random variation in the
stochastic optimization. We tested this hypothesis by re-
running the cross-validation with the second-best values
found in the parameter validation (larger o and «). This
decreased the error rate to 13.72 percent, and differences to
MRMI, LDA and PCA became non-significant. Reducing
« further improved the cross-validation performance to
12.62 percent—the best result for Landsat.

TABLE 11
DIFFERENCE OF PERFORMANCE OF THE METHODS. THE LEFTMOST
FIGURES IN EACH TABLE ARE AVERAGE CLASSIFICATION ERROR RATES
OVER THE TEN FOLDS, IN PERCENTAGES. THE METHODS ARE LISTED
IN THE ORDER OF INCREASING AVERAGE ERROR RATE, AND THE BEST
METHOD IS SHOWN IN BOLDFACE. THE FIGURES IN THE LAST THREE
COLUMNS OF EACH TABLE ARE p-VALUES FOR A TWO-TAILED T-TEST
THAT THE DIFFERENCE BETWEEN THE METHODS ON THE ROW AND
THE COLUMN IS NONZERO.

Landsat
| Error  LDA  PCA New
MRMI | 1334 049 0.05 0.04
LDA 13.62 - 0.46  0.06
PCA 13.96 - 0.27
New 14.70 -
LVQ_PAK
Error PCA MRMI LDA
New 8.51 004 <107% <103
PCA 9.60 - 0.20 0.09
MRMI | 10.25 - 0.33
LDA | 10.51 -
Isolet
Error LDA MRMI PCA
New | 17.74 <10 % <10 ° <107
LDA 28.79 - 0.56 <106
MRMI | 29.44 - <10-6
PCA | 40.15 -
MFeat
Error PCA MRMI LDA
New | 17.06 002 <10 2 <10 2
PCA | 19.60 - 0.37 0.05
MRMI | 20.89 - 0.90
LDA | 21.08 -
TIMIT
Error MRMI LDA PCA
New | 59.58 0.95 093 <10°°
MRMI | 59.59 - 099 <106
LDA | 59.60 - <1077
PCA | 64.10 -

E. Qualitative comparison

For the purpose of easy visual comparison, we computed
two-dimensional projections of the MFeat data. The pro-
jections that gave best performance on the validation set
were selected.

The classification error rates were 28.20% for our
method, 32.88% for MRMI, 34.76% for LDA, and 34.88%
for PCA.

Fig. 2 shows scatterplots of the (out-of-sample) vali-
dation data. The MFeat data are Fourier coefficients of
handwritten numerals.

It is clearly visible in the projections that LDA and PCA
both separate the classes 0, 8, 5, and 2 well from the other
numerals. The others are overlapping, grouped together
at the bottom of the projection images. LDA has kept the
classes more tightly clustered than PCA.

The new method and MRMI achieve the best results.
The main difference is that MRMI lets numerals 6 and 9
overlap 3 and 4, while the new method separates them.
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Fig. 2.

Two-dimensional projections of MFeat leave-out data containing 10 classes of handwritten numerals. PCA=principal components

analysis, LDA=linear discriminant analysis, MRMI=maximization of Renyi mutual information.

The new method also separates 5 slightly better from 4.
The LDA initialization seems to be still visible in the
MRMI result, while the new method has discovered a
projection clearly differing from LDA.

F. Complexity control

The complexity of the predictions depends on two main
factors: the kernel width parameter ¢ and the number of
components (projection dimensionality d).

1) Kernel width: In our experiments the parameter o
has been chosen by preliminary experiments to maximize
performance on a preliminary division of data, as described
in Section V-C. In general, low values of ¢ increase the
resolution of the Parzen windowing; in the limit ¢ — 0
the predictor predicts the class of the nearest neighbour
after projection. High values soften the prediction over
an increasing neighbourhood, and in the limit ¢ — oo
the overall class proportions are predicted. Since distances
between samples tend to increase with dimensionality,
larger o may be required for high-dimensional projections.

2) Dimensionality: In general choosing the dimension-
ality is a difficult issue where for instance Bayesian meth-
ods may help. We do not study such extensions here but
measure the results as a function of dimensionality.

We computed projections of increasing dimensionality
(from 2 to 25) for the Isolet data set by the proposed
method. As a comparison we also computed LDA projec-
tions; LDA cannot find more than 25 components here
since there are 26 classes.

The goodness of the projections was again evaluated by
the indirect measure in Section V-B, that is, classification
error for test data, classified based on training data with
KNN after the projection.

To preserve computation time, we did not use cross-
validation here. Instead, the projections were computed
on a single training set, and their goodness was evaluated
on a separate test set.

For the proposed method, the ¢ and « parameters
were first validated for each dimensionality, by dividing
the training set into learning and validation subsets. The
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Fig. 3.  Classification performance (rate of correct classification)

in projection spaces of varying dimensionality for leave-out Isolet
data. Solid line: proposed method, dashed line: LDA, dotted line:
all features (no projection).

parameters were chosen to maximize performance on the
validation subset; to avoid excess noise in the validation,
a moving average filter was applied to the results matrix
along the o axis. The final projections were then computed
on the whole training set.

The results are shown in Fig. 3. Increasing the di-
mensionality improves the performance of both methods.
The proposed method consistently outperforms LDA at
low dimensionalities; for high dimensionalities the results
converge. The performance seems to saturate after dimen-
sionality 7 for the proposed method and 13 for LDA. Note
that at high dimensionalities both methods yield better
classification than using all features; this suggests that
there may be irrelevant directions in the original data.

A note about ordering of components: The proposed
method does not give an ordering of the components
that it finds, or a successive embedding of the projection
subspaces. The lack of ordering is a property of the task,
not the method: there exist data sets where the successive
projection subspaces may even be orthogonal!®

In many practical cases an ordering may exist; then one
can extract the components by successively finding lower-
dimensional subspaces, with the previous projected data
as input. In each projection, some directions are left out
of the subspace. The directions left out first are the least
important.

G. Data analysis demonstration

In this section we demonstrate one way of using the
extracted components for exploratory data analysis. As
an example we will explore the LVQ_PAK data.

The LVQ_PAK data consists of features of short-time
samples of spoken phonemes. The primary data are

1For example, in a toy example where a torus (class 1) is wrapped
around the middle of a cylinder (class 2), the correct one- and two-
dimensional solutions are orthogonal to each other.

the feature values and the auxiliary data the phonemes
(classes). We know how the features have been computed
and what they represent, but we will not use this knowl-
edge in the analysis. This prior knowledge will be used
only after the data-driven component analysis to verify
and interpret the findings.

The goals of the analysis are (i) to visualize similarities
of the classes, and (ii) to perform feature exploration to
discover how the features differentiate between phonemes.

We chose again the projection dimension of 5, and of the
projections computed in Section V-C we chose the one that
gave the best validation result in the parameter selection
phase.

1) Visualization of classes: Scatterplots are the sim-
plest means of visualization. Fig. 4 shows three scatter-
plots for different pairs of the 5 components.

It is clear based on the visualizations that similar
phonemes are usually close-by in the projection space: for
example, A is adjacent to A, O is adjacent to U, and M
is adjacent to N. Moreover, the 2nd component (x-axis in
the lower figures) arranges vowel sounds in the order A,
A, O, U, E, I, where both the front vowels A, E, T and the
back vowels A, O, U are arranged in the order of height
(defined roughly as the pitch of the first formant).

2) Feature exploration to characterize the classes: Fur-
ther insight is gained by investigating how particular
classes are differentiated in the projection. For example,
the second component suffices to separate A from the
other phonemes. By contrast, I does not seem to be well
separated by any single component. For instance, along
component 2 it overlaps with S and along component
1 with the other vowels (see the topmost projection in
Fig. 4). The best single projection for I is perhaps the
plane formed of components 1 and 2.

The components can be interpreted in terms of the
‘contributions’ of the original variables in them, assuming
the original variables have intuitive interpretations. A
simple way of interpreting the components is to list which
primary variables have the largest (absolute) component
values in them.

Luckily, in this case study we actually do know that the
features are so-called cepstral components of the original
speech waveforms, and we can study the meaning of
the projection directions in terms of sound spectra. For
example, we can study what spectral characteristics the
projections use to discriminate between A and S. We stress
that this information is not used by the method, and this
additional study is included merely to gain insight into
what the method discovers.

In the LVQ_PAK data, the original variables are MEL-
frequency cepstral components, corresponding to linear
filters of the logarithmic power spectrum of a sound. The
feature extraction process is described in [34].

Since the projection is a linear operation, each projec-
tion direction can be represented as a single linear filter of
the logarithmic power spectrum. Fig. 5 shows the shape
of the combined filter for each component. In other words,
the subfigures show what kinds of spectral characteristics
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Fig. 5. Response sensitivity (weighted filter) of each component found for LVQ_PAK data. The value of the component is the inner product
of the speech spectrum with this filter. X-axes: frequency, Y-axes: filter value.
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Fig. 6. Sample logarithmic power spectra for spoken (Finnish) phonemes present in LVQ_PAK data. X-axes: frequency, Y-axes: log of
power. Original LVQ_PAK power spectra were not available, and these images are computed from similar Finnish speech data.

each component is sensitive to.

It was noted above that component 2 suffices to dis-
tinguish A from the other phonemes. The first formant
frequency of A, shown by the leftmost peak in the spec-
trum of Fig. 6, matches the location of the upward spike
in the second filter in Fig. 5. The filter gives a strong
positive response to the peak in A, and hence values of
component 4 for A are large. This is seen clearly in the
topmost scatterplot of Fig. 4. On the other hand, the
vowel in the other end of the continuum, I, has only small
values at the formant frequency of A, and the first and
second formant frequencies of I are near mild downward
spikes in the filter. Hence, the filter gives a small response
to I and the coordinates along component 2 are small
in Fig. 4. The filter is not attuned just to either A or I
separately; instead, it has found a shape that responds to
both phonemes but in the opposite fashion—this makes
it discriminate the two. The other vowels have responses
between those of A and I; for example, the first formant
frequency of U is about the same as that of I, but U also
has large values near the upward peak, and low ones near
the downward peak of the filter near 2 kHz.

The phoneme I was an example that cannot be discrim-
inated based on only one component. The lower end of
the spectrum resembles that of S; indeed, filter 2 gives S
and I about the same response. Much of the power in the
spectrum of S is concentrated at high frequencies (Fig. 6).
None of the filters have large peaks there. Filter 1 has
a mild downward spike near the start of the spectrum,
and a broad two-tipped upward spike after it. Hence it
gives similar responses to the vowels, since their peaks
are near the upward spike. However, notice that filter 2
does separate I from the other vowels, which receive larger
responses, and filter 1 separates S from I, since it has a
downward spike at the first peak in the spectrum of S
and the large upward spike starts at the first formant
frequency of I. The filters then compensate each other
when separating I. The projection is informative as a
whole.

VI. DISCUSSION

We studied data-driven learning of components of pri-
mary data that are informative of or relevant for auxiliary
data. The auxiliary or side data is used to define what
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Fig. 4. Scatterplots of LVQ_PAK leave-out data on component pairs
of the 5-dimensional projection. A is denoted by ‘[, silence by ‘#’,
and other phoneme classes by their respective letters.

is relevant, and the components disregard the rest. We
suggest coining this task relevant component analysis.

Such models are applicable to dimensionality reduction,
visualization, data exploration, and feature exploration.
Moreover, the specific model that was proposed is ap-
plicable as a linear model of conditional probabilities.
The model complements (unsupervised) projections that
aim at preserving distances or cluster structures within
the data. The components model class changes, and can
be used to visualize the class structure and find which
components are relevant to the class changes. Such ‘feature
exploration’” was demonstrated for speech data in this
paper, for gene expression data in [35], and the model
was applied for assessing and visualizing convergence of
MCMC chains in [36].

In this paper a family of very simple generative models
was introduced for finding linear relevant components
when the auxiliary data are categorical. The models were
shown to have asymptotic connections to maximization
of mutual information and the so-called learning metrics;
for the specific model family the concepts predictivity,
maximization of mutual information, and principal com-
ponent analysis in learning metrics are equivalent. In a
sense, the model is a generalization of classical linear
discriminant analysis. The asymptotic theoretical connec-
tions were proven for consistent estimators such as Parzen
estimators; the results do not in general hold for non-
consistent estimators.

In experiments, the model outperformed both the clas-
sical linear discriminant analysis and a Renyi entropy-
based projection method while having essentially equiv-
alent computational cost with the latter. LDA is much
faster. The proposed method is based on Shannon entropy,
and the result may suggest a more general conjecture
about the need to switch to Renyi entropy.

Visualizations of different models were additionally com-
pared with the same conclusion, and practical data anal-
ysis was demonstrated on phoneme data.

The proposed method involves estimation of the condi-
tional density of auxiliary data in the projection subspace.
In this paper this was done with a non-parametric Parzen
estimator; other estimators could also be used. The Parzen
estimator has the advantage that it need not be separately
re-estimated while the projection is optimized. However,
it can be computationally demanding for large data sets.
An alternative would be to use a parametric estimator and
optimize both the projection and the estimator simultane-
ously. For now, we did not try this since the speed-up is
not expected to be great for data sets of moderate size.

The projection was optimized by stochastic approxi-
mation. Any other standard optimization method could
have been used instead; stochastic approximation has
the advantage that it can be easily extended to on-line
learning.

The presented method requires labeled learning data.
Unlabeled data can be analyzed with the components, but
only labeled data affect the learning. The model can be
extended in a straightforward way to utilize unlabeled data
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for learning as well, along the lines of [37]. The present
objective function, L = L(C|f(X)) (cf. 1), will be replaced
by a compromise parameterized by 0 < g < 1: L' =
BL(C|f(X))+(1—pB)L(f(X)). Here C is the label, f(X) is
the projected primary data, and L(f(X)) is the likelihood
of a suitable generative model of f(X). When g = 0
the model is unsupervised, when 8 = 1/2 the projection
models the joint density, and setting 3 = 1 gives the
present model. Changing ( will naturally change the goal
of the projection, and some of the useful interpretations
given in Section IV will be lost. However, there is evidence
that unlabeled data may help even in a discrimination task
[38].

Only linear components were considered; extensions to
non-linear projections will be studied later. Linearity is
a fairly restrictive constraint for a projection, and it is
expected that the differences between alternative methods
will be larger for non-linear methods. Another obvious
direction for extensions is towards more general auxiliary
data. The presented method was an extension of linear
discriminant analysis; canonical correlations could be gen-
eralized in the same fashion.

Zhu and Hastie have recently presented a different kind
of related work [39]. They extend classical LDA by maxi-
mizing the likelihood ratio between class-specific and class-
independent models. For non-parametric estimators the
method is very close to ours. More generally, however, the
difference is that we do not need an estimator of primary
data densities—the conditional class probabilities suffice.

Another very recent related work [40] defines a new
objective function for dimensionality-reducing projections
by making a suitable conditional independence assumption
and using Gaussian-based kernels. The relative metrits of
this promising work should be assessed empirically later. It
shares some of the good properties of our method: Para-
metric assumptions about the distribution of classes are
not needed, and the covariates need not be modeled. Both
methods are ultimately optimized by standard gradient
techniques. A possible problem in [40] is that a seemingly
arbitrary measure of matrix size needs to be chosen. By
contrast, the likelihood in our method is a well-defined
finite-data criterion.

In this paper we did not consider the important, much
studied issues of how to select the projection dimension-
ality and the kernel. Since the model conforms to the
standard probabilistic framework, Bayesian methods could
be applied in principle.

APPENDIX A

The on-line (stochastic) gradient for optimizing the
objective function L in (1) with regard to the projection
matrix W of the linear projection f(x) = WTx will be
derived in this Appendix.

Assume the parameters of the conditional probability
estimate p(c|f(x)), defined by (2), are fixed with respect
to W. Then

iL(x W) =

= log p(clf(x)) =

OW

We have
) d wG(f(x),¢)
S elfC0) = S
e S g GG, )
Belf00) ST
and hence
0
8_WL(X c V\;) )
G(f(x),c) > awCG(E(x),)
G(f(x),c) - G(f(x),c (13)
Since
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2l = SN e P27
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_ ;_;g(f(x), m)(x — L) (x — ) TW

= %g(f(x), m)(x — 1) (F(x) = £(rm))"

we furthermore have

9
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Substituting the above into (13) the stochastic gradient of
the objective function becomes

0
2— . =
o 5 L(x,c; W)
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Defining the expectation-like operators FEg(y,|x) and
E¢(mix,cy as weighted summation over m, with weights
given by (5) and (6), respectively, finally yields (4).

_|_

(x =) (£(x) = £(rm)) " .

APPENDIX B

Torkkola and Campbell [7] gave two alternative def-
initions for the Renyi entropy-based quadratic mutual
information; the second is

Ir(CY) = Z/p(c,Y)zdy+Z/p(C)2p y)?
—QZ/ (c,y)p

(v)dy (14)
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where y = f(x) = WTx are the projection coordinates.
This form was used in later papers [15]. When densities in
the projection space are estimated with Parzen estimators
based on data {(x,cx)}s_,, the integral (14) can be
evaluated analytically. The result, the objective function
Lasrarr of MRMI, is ([7] with a slightly different notation)

N N
1
Lyrvr = <7 Z Z Sy, G (£ (x| (x1), 0°T)

) 11\6[215121 2\ N N
e |22 N) > GlEGa)If(x),0°T)
c k=1 k=11=1
5ck,c
|5

2

N2

N N
'ZZ50k»cG(f(Xk)|f(Xz),U2I)] (15)
k=1

=1

where G(f(x)|f(xx),0%I) is the value at f(x) of a d-
dimensional Gaussian distribution with mean f(x)) and
covariance matrix o2I. Denoting p(c) = + ij:l ¢y ey (15)
can be rewritten in a simpler form as

N
1
Lyvrmr = > Larai (Xk, cx; W)

k=1

where

G(f 1),0°T)

N
LMRMI X C; W = E
=1

ccl+zp _2p ] .

In stochastic approximation we pick (x,c¢) from the data
(with equal probabilities 1/N) and compute the gradient
of L]WRMI(Xv C; W) Since

0

S CEIE(), 1)
W

= —GEIE(x), oD (x — x0)(x — x))"

= %G(f(x)\axl),o%)(x—xz><f<x> — ()"

the gradient of Lasrarr(x, c; W) becomes (9).

APPENDIX C

A connection between the proposed algorithm and learn-
ing metrics is sketched in this appendix. The mutual
information after the projection approximately equals a
certain average reconstruction error. The connection is
actually not restricted to only linear projections f(x).

The assumptions are rather strong, which makes the
connection more a justification than a proof. It is assumed
that local approximations to the metrics are sufficient,
and that good reconstruction points exist. Justification for
these assumptions is given at the end of the appendix.

A. Preliminaries

Denote the set of points that are projected to y by S(y),
that is,

S(y) = {xlf(x) =y} .

Given a projected point y, the conditional auxiliary
distribution is an expectation over S(y) given by

fxES(y) p(C, X)dX
fxes(y) p(x)dx

Let the reconstruction r(y) € S(y) of a projection y be
the point that minimizes Dxr(p(cly), p(c|r(y))).

pe,y)/ply) =

plcly) =

B. The connection

When a consistent estimator is used for the auxiliary
distributions, the second term in (10) asymptotically van-
ishes, and the objective function is then equivalent to

1C.Y) = [ o) 3 plely) o p(eiy)dy + H(C)
— [ 95 Y ptcly) log p(ci(y))dy
plely)
+/p(y);p(0|y) log )
— [ 55 Y plcly) bog p(ei(y))dy
T By D (plely), plelr(y)))] + H(C)
— [ 1) 3 plel) og plelr(£x))) i
+ Epy) [Drr(p(ely), plelr(y)))] + H(C)

= —Epx) [DrL(plelx)lp(clr(y)))]
+ Epy)[Dir(p(cly), plelr(y)))] + H(C) —

Here X denotes the random variable having values x
in the primary data space. For two close-by points the
learning metric is given by the Kullback-Leibler divergence
n (12). We will assume that this local approximation is
approximately correct (justification at the end); the last
line can then be rewritten as

+H(C)

H(C|X) .

I(C,Y) m = Epx[d (x, x(f(x)))]
+ Epy) [Drr(p(cly), plelr(£(x))))] + I(C, X)

where the first term on the right is an average reconstruc-
tion error, squared distance from a point to its reconstruc-
tion, computed in the learning metric. The term I(C, X) is
constant with respect to the projection. If the middle term
is approximately constant (with certain assumptions it is
close to zero; justification at the end), maximizing I(C,Y)
is equivalent to minimizing the average reconstruction
error.

If the middle term is not (nearly) constant, the proposed
algorithm does not minimize the reconstruction error. If
the goal is not to maximize mutual information but to

(16)
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minimize the reconstruction error, it can in principle be
done by minimizing

By [d7 (x, x(£(x)))]
~ —I1(C.Y) + Epy) [Drr(p(cly), p(clr(y)))] + const.

C. Note on sufficiency of local distances

The local distance approximation used in the proof is
reasonable when the learning metric distances in (almost)
all S(y) are small, or alternatively when the Fisher infor-
mation matrix J(x) that defines the local metric in (12) is
nearly constant in S(y). The former holds at least when
the projection subspace already explains most variation in
the auxiliary data (that is, the projection dimensionality
is large enough and the projection matrix is close to the
optimum). Even if the distances are not small, the latter
holds if the auxiliary data in S(y) changes at a constant
‘rate’ (as measured by the Kullback-Leibler divergence).

D. Note on the reconstruction points

The divergence term (middle term in (16)) is zero
trivially if the distribution of auxiliary data is constant in
the direction orthogonal to the subspace. This holds ap-
proximately if the data is local in the orthogonal direction,
which is likely to hold is the projection dimensionality is
large.

Additionally, the divergence term is zero at least if the
auxiliary distributions p(c|x) in S(y) form a convezr set
in the distribution space, that is, any weighted average
of two auxiliary distributions in S(y) also exists in S(y).
The simplest example is a weighted combination of two
distributions by a continuous function of x.
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