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Local multidimensional scaling

Abstract

In a visualization task, every nonlinear projection method needs to

make a compromise between trustworthiness and continuity. In a trust-

worthy projection the visualized proximities hold in the original data

as well, whereas a continuous projection visualizes all proximities of

the original data. We show experimentally that one of the multidi-

mensional scaling methods, curvilinear components analysis, is good

at maximizing trustworthiness. We then extend it to focus on local

proximities both in the input and output space, and to explicitly make

a user-tunable parameterized compromise between trustworthiness and

continuity. The new method compares favorably to alternative nonlin-

ear projection methods.

Keywords: Information visualization, manifold extraction, multi-

dimensional scaling (MDS), nonlinear dimensionality reduction, non-

linear projection, gene expression.
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Symbol Description

i, j indices of data points

k number of nearest neighbors

N number of data points

xi data point in the input space

yi representation of point i in output space

Cx covariance matrix of the data

d(xi,xj) distance in the input space

d(yi,yj) distance in the output space

λ vector of eigenvalues

σy radius of the area of influence

pij , qij probability of i being a neighbor of j

mi model vector

ri location on the SOM grid

Uk(i) the set of data points that are in the neighborhood of

point i in the output space but not in the input space

r(i, j) the rank of point j in the ordering according to

the distance from i in the input space

Vk(i) the set of data points that are in the neighborhood of

point i in the input space but not in the output space

r̂(i, j) the rank of point j in the ordering according to

the distance from i in the output space

λ tradeoff parameter on local MDS
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1 Introduction

In information visualization, one of the main tasks is to reduce the

dimensionality of data to two or three, to visualize proximities within

a data set. In general, it is not possible to reduce the dimensionality

without losing some of the proximities in the process. Two kinds of

errors can occur. First, data points originally farther away may enter

the neighborhood of a sample in the projection. These errors decrease

the trustworthiness of the visualization, as they create neighborhood

relationships that are not present in the data. Second, data points

that are originally in the neighborhood can be pushed farther away

in the visualization. This stems from the discontinuity of the map-

ping. Because of the discontinuities some of the original neighborhood

relationships are missing from the visualization. Each dimensionality

reduction method necessarily makes a tradeoff between these two kinds

of errors. This setting is analogous to the precision—recall tradeoff in

information retrieval.

We have earlier (Kaski et al., 2003) argued that trustworthiness

is often more important than continuity since the visualized proxim-

ities are particularly salient. It has turned out in our experiments

(see Section 3.3) that one of the multidimensional scaling methods,

curvilinear component analysis (CCA: Demartines & Hérault, 1997),

is particularly good in this respect. It aims at preserving pairwise dis-

tances but not all of them; only distances between points close-by on

the visualization are preserved. The formulation of neighborhoods in
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the projection plane shares some motivation with the Self-Organizing

Map (Kohonen, 2001). It would be even better to let the user decide

about the compromise between trustworthiness and continuity, and in

this work we will extend CCA to make a parameterized compromise

between trustworthiness and continuity. We call the new method local

multidimensional scaling (local MDS).

New methods for estimation of data manifolds or embeddings have

been presented in recent years. So far the methods, isomap (Tenen-

baum et al., 2000), locally linear embedding (LLE: Roweis & Saul,

2000), Laplacian eigenmap (Belkin & Niyogi, 2002a) and stochastic

neighbor embedding (SNE: Hinton & Roweis, 2002), have not been

compared in the task of visualization where the dimensionality of the

representation is not selected based on the manifold but constrained by

the display instead. We compare these methods with CCA and SOM,

two older methods that are known to perform well in visualization, and

with the new local MDS proposed here.

Many nonlinear projection methods operate on a distance matrix

of the data. Typically Euclidean distance matrix has been used but

there has recently been a trend, started by isomap, of creating new

variants of older methods by replacing the Euclidean distance matrix

with approximation of the geodesic distance matrix. In this paper we

will, in addition to isomap, compare such variants of CCA and SNE

to their Euclidean counterparts. The goal is to see whether the use of

the geodesic distances enhances visualization performance.
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2 Information visualization methods

2.1 Multidimensional scaling

We did not include traditional multidimensional scaling (MDS) to the

comparisons, but a short description helps to understand the more

recent methods below.

There are several different variants of MDS (Borg & Groenen,

1997), but they all have a common goal: to find a configuration of

points that preserves the pairwise distance matrix. The simplest ver-

sion is the linear MDS (Torgerson, 1952; Gower, 1966), also called

classical scaling. The solution to Linear MDS can be found by solving

an eigenvalue problem.

A slightly more complex version is metric MDS. Its cost function is

E =
∑

ij

(d(xi,xj) − d(yi,yj))
2, (1)

where d(xi,xj) is the distance in the input space and d(yi,yj) the

distance in the output space, between the representations yi and yj of

the points i and j. The cost function is minimized with respect to the

representations yi.

Most versions of MDS use a variant of this cost function. Sammon’s

mapping (Sammon Jr., 1969) gives small distances a larger weight.

In non-metric MDS (Kruskal, 1964) the distances are modified by a

monotonic function. There exists a huge number of different variants,

but all have basically the same form.
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2.2 Principal component analysis (PCA)

The goal of PCA (Hotelling, 1933) is to find linear projections that

maximally preserve the variance in the data. The projection directions

can be found by solving the eigenvalue problem

Cxa = λa , (2)

where Cx is the covariance matrix of the data x. The data points xi

can then be visualized by projecting them with

yi = Axi, (3)

where A is the matrix containing the eigenvectors corresponding to the

two or three largest eigenvalues, and yi is the obtained low-dimensional

representation of xi.

PCA is very closely related to linear MDS. Gower (1966) has shown

that when the dimensionality of the solutions is the same, the projec-

tion of the original data to the PCA subspace equals the configuration

of points found by linear MDS that is calculated from the Euclidean

distance matrix of the data. Thus the cost function of PCA tries to

preserve the squared distances between data points.

2.3 Locally linear embedding (LLE)

The LLE algorithm developed by Roweis and Saul (2000) is based on

the assumption that we can make a locally linear approximation of

the data manifold. It assumes that a point and its neighbors lie in or

close to a locally linear subspace on the manifold. The geometry of
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this subspace can be captured by calculating the linear coefficients that

reconstruct each data point from its neighbors. Here the neighbors are

the k nearest neighbors of the data point. The reconstruction error is

defined as

E(W) =
∑

i

‖xi −
∑

j

Wijxj‖
2. (4)

To find the optimal weight matrix W the reconstruction error is min-

imized subject to the constraints that Wij = 0 if i and j are not

neighbors, and
∑

j Wij = 1.

For visualization we want to reduce the dimensionality of the data

to two or three. To achieve this we have to solve another optimization

problem,

E(Y) =
∑

i

‖yi −
∑

j

Wijyj‖
2 , (5)

for yi, the low-dimensional representation of the data point i. The

problem can be solved by finding the p + 1 smallest eigenvalues of the

matrix (I−W)T (I−W) (details in Roweis & Saul, 2000), where p is

the dimensionality of the output. The smallest eigenvalue corresponds

to a constant eigenvector and the next p give the coordinates of the

data points within the manifold space.

The LLE implementation at http://www.cs.toronto.edu/∼roweis/lle/

was used in the experiments.

2.4 Laplacian eigenmap

The Laplacian eigenmap algorithm of Belkin and Niyogi (2002a) is

similar to the LLE algorithm. The first step is to form the k-nearest-

neighbor graph. Each data point is a vertex in the graph. There is
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an undirected edge from point i to point j if j is among the k nearest

neighbors of i. The definition of a neighbor differs from that used in

LLE in that the neighborhood relation here is symmetric. If the data

point i is a neighbor of j then j is also always a neighbor of i.

After the graph has been formed the edges have to be given weights.

The simple method of assigning Wij = 1 if the points i and j are

neighbors and zero otherwise has been found to work well in practice

(Belkin & Niyogi, 2002b).

The configuration of points in the low-dimensional space can be

found by solving the generalized eigenvalue problem

Ly = λDy, (6)

where D is the diagonal matrix with elements Dii =
∑

j Wij , and L =

D−W. The embedding of the data points is given by the eigenvectors

having the p smallest eigenvalues, after discarding the smallest (always

zero) eigenvalue.

2.5 Isomap

The isomap (Tenenbaum et al., 2000) is a variant of linear MDS. It

finds a configuration of points that matches the given distance ma-

trix. The difference from traditional MDS is in how the distances

are defined. Isomap uses geodesic distances instead of direct pairwise

distances. The geodesic distances are approximated with the short-

est path distances calculated along the k-nearest-neighbor graph. The

graph is defined in the same way as in the Laplacian eigenmap, ex-
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cept that the weights of the edges are set to the Euclidean distances

between the connected points.

The actual embedding of points is found by standard linear MDS,

applied to the shortest-path distance matrix. It has been shown (Bern-

stein et al., 2000) that this algorithm is asymptotically able to recover

certain types of manifolds.

The isomap implementation available at http://isomap.stanford.edu/

was used in the experiments.

2.6 Curvilinear component analysis (CCA)

CCA by Demartines and Hérault (1997) is also a variant of MDS.

The starting point is a random initialization of points in the reduced-

dimensional output space, and a pairwise distance matrix between the

original data points. It differs from the standard formulation of MDS

in that it concentrates on preserving the distances of points that are

proximate in the output space. The cost function measures preservation

of the original pairwise distances, weighted by a coefficient F that

depends on the distance between the points in the output space:

E =
1

2

∑

i

∑

j 6=i

(d(xi,xj) − d(yi,yj))
2F (d(yi,yj), σy) . (7)

The coefficient F is usually defined as an area of influence around a

data point in the output space:

F (d(yi,yj), σy)) =















1 if d(yi,yj) ≤ σy

0 if d(yi,yj) > σy .

(8)

The cost function is optimized using a form of stochastic gradient

descent algorithm. In the beginning of optimization the radius of the
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area of influence, σy, is kept large enough to cover all or at least most

of the data points. During the optimization it is slowly decreased to

zero.

An extension of CCA, curvilinear distance analysis (CDA), was

recently introduced by Lee et al. (2000, 2004). The main idea of CDA

is to replace the Euclidean distances in the original space with geodesic

distances in the same manner as in the isomap algorithm. Otherwise

the algorithm stays the same.

2.7 Stochastic Neighbor embedding (SNE)

The SNE algorithm developed by Hinton and Roweis (2002) does not

try to preserve pairwise distances as such, but instead probabilities of

points being neighbors. The pairwise distances in the input and output

space are used to define probability distributions on how probable it

is that the point i is a neighbor of point j. The goal then is to find

a configuration of points in the output space where those probabilities

are the same, for each pair of points, as in the input space.

More formally, the probability pij of the point i being a neighbor

of point j in the input space is defined to be

pij =
exp (−d(xi,xj))

∑

k 6=i exp (−d(xi,xk))
, (9)

where d(xi,xj) is the pairwise distance between the data points. In

this paper d(xi,xj) is either the Euclidean distance between the data

points, or the geodesic distance that is calculated in the isomap. The

version of SNE that uses geodesic distances will be referred to as SNEG
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to distinguish between the two variants.

Similarly, the probability of the point i being a neighbor of point j

in the output space is defined to be

qij =
exp (−‖yi − yj‖

2)
∑

k 6=i exp (−‖yi − yk‖2)
. (10)

The configuration of points yi that minimizes the Kullback-Leibler di-

vergence between the probability distributions in the input and output

spaces is the solution for the problem. The cost function is thus

E =
∑

i

∑

j

pij log
pij

qij

. (11)

In the experiments we used the SNE implementation that is part

of the Matlab package available at

http://www.kyb.tuebingen.mpg.de/bs/people/zien/Mbed/. It uses con-

jugate gradients for optimizing the cost function.

2.8 The self-organizing map (SOM)

The SOM (Kohonen, 2001) consists of a regular grid of units. Each

unit contains a model vector mi ∈ R
n, where n is the dimensionality

of the data. The sequential SOM algorithm iterates two steps. First,

for data point x(t) chosen randomly at iteration step t = 0, 1, 2, . . . ,

the best matching model vector mc(t) is sought using the equation

c(t) = argmin
j

{d(x(t),mj)}, (12)

where d(x(t),mj) is the distance between the data point x(t) and the

model vector mj . When the best matching model vector has been



Local multidimensional scaling 13

found, the model vectors are updated with

mj(t + 1) = mj(t) + hc(t),j(t)[x(t) − mj(t)]. (13)

The function hc(t),j(t) = h(‖rc(t) − rj‖; t), where rj and rc(t) are

the location vectors on the SOM grid for the units, is the neighborhood

function. It makes the map ordered.

The visualizations produced by the SOM differ from the other

methods presented here. Instead of each data point having its own

location, on the SOM each data point is placed at the location of the

best matching unit on the fixed SOM grid. Typically SOMs are visual-

ized using the U-matrix (Ultsch, 1993, see Figure 3) or its variants. A

gray-shade code is used to display distances between neighboring units.

The light areas contain units that are mutually more similar than on

the dark areas. Technically, space is added in between each pair of

SOM units and shaded according to the distance between their model

vectors. The shade of the map units is proportional to the median of

distances to the neighboring units.

On a SOM display, the similarity can be defined simply as the

distance on the display plane. This measure does not, however, take

into account the density of the model vectors that is visualized by the

U-matrix. Hence, we have used distances along minimal paths on the

map lattice, with weights equal to the distances between the model

vectors. On light areas, such distances are shorter and on dark areas

they are longer.
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3 Comparison of the methods

We start by comparing the nonlinear projection methods on toy data

sets to illustrate their properties in a visualization task, and on real

world high-dimensional data sets. After this, we extend one of the

methods, the best performing (CCA), to local MDS in the next session.

3.1 Data Sets

Thick S-curve. A simple data set having a folded low-dimensional

manifold, a two-dimensional S-shaped curve in a three-dimensional

space, was constructed as follows. First, the data was uniformly sam-

pled from a two-dimensional S-shaped sheet. Then, to give the man-

ifold a thickness, a spherical normally distributed displacement was

added to each point. The data set consists of 1000 data points.

Clusters. The data set consists of six clusters that are located sym-

metrically in a three-dimensional space. Five of the clusters are spher-

ical Gaussians and one is a two-dimensional S-shaped manifold. The

data set has 1000 data points divided in equal proportions to the clus-

ters.

This data set poses an interesting problem for the methods that use

k-nearest neighbor information. On typical values of k the k-nearest

neighbor graph separates into several unconnected sections. Because

of this, it is impossible to utilize these methods directly. There are

two possible solutions. We can either increase k to make the graph

connected (k > 63 on this data set) or add tailored connections to
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the graph. The downside of increasing the number of neighbors is

that the shortest path distances become more like Euclidean distances

and some of the possible benefits of using geodesic distances are lost.

Adding tailored connections is not trivial either.

We suggest using a simple practical procedure as an alternative

to increasing k. We first create the (symmetric) k-nearest-neighbor

graph and then recursively connect two separate sections by finding

the smallest Euclidean distance between any two points in different

unconnected sections. This procedure adds as few and as short edges

to the graph as possible, to make it connected.

We tested both approaches. On LLE using a small number of neigh-

bors and adding connections to the graph was the best solution based

on the measures introduced in Sec. 3.2. On Laplacian eigenmap the

results were very similar for both approaches with an increase in k pro-

ducing slightly better results. On the isomap increasing k to make the

graph connected was clearly the better method on this data set. On

CDA and SNEG keeping k small and adding edges to make the graph

connected produced the best results. On each method we utilized the

best approach.

Gene expression compendium. We used the large collection

of human gene expression arrays collected by Segal et al. (Segal et

al., 2004). (The normalized expression compendium is available from

http://dags.stanford.edu/cancer.)

For visualization purposes we removed samples with missing values
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from the data. First we removed genes that were missing from more

than 300 arrays. Then we removed the arrays for which values were

still missing. This resulted in a data set containing 1278 arrays and

1339 genes (dimensions).

This is a very hard data set to visualize. The data is very high

dimensional and there do not seem to be any low dimensional manifold

structures that the methods could take advantage of.

Mouse gene expression. The fourth data set is a collection of

gene expression profiles from different mouse tissues (Su et al., 2002).

Expression of over 13000 mouse genes had been measured in 45 tissues.

We selected an extremely simple filtering method, similar to that orig-

inally used in (Su et al., 2002). Of the mouse genes clearly (average

difference in Affymetrix chips, AD > 200) expressed in at least one of

the 45 tissues, a random sample of 1600 genes was selected for visual-

ization. The variance in each tissue was normalized to unity. For more

details of the data set and of preprocessing see the paper by Kaski et

al. (2003).

3.2 Measuring trustworthiness and continuity of a

visualization

We consider a projection onto a display trustworthy if the k closest

neighbors of a point on the display are also neighbors in the original

space. We will use the following trustworthiness measure to compare

the different visualization methods, and to quantify the compromise
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made by the new method. (See Kaski et al., 2003; Venna & Kaski,

2001, for details.)

Let N be the number of data samples and r(i, j) be the rank of

the data sample j in the ordering according to the distance from i

in the original data space. Denote by Uk(i) the set of those data

samples that are in the neighborhood of size k of the sample i in the

visualization display but not in the original data space. Our measure

of trustworthiness of the visualization is

M1(k) = 1 −
2

Nk(2N − 3k − 1)

N
∑

i=1

∑

j∈Uk(i)

(r(i, j) − k) . (14)

The errors caused by discontinuities may be quantified analogously

to the errors in trustworthiness. Let Vk(i) be the set of those data

samples that are in the neighborhood of the data sample i in the origi-

nal space but not in the visualization, and let r̂(i, j) be the rank of the

data sample j in the ordering according to the distance from i in the

visualization display. The effects of discontinuities of the projection

are measured by

M2(k) = 1 −
2

Nk(2N − 3k − 1)

N
∑

i=1

∑

j∈Vk(i)

(r̂(i, j) − k) . (15)

In case of ties in rank ordering, all compatible rank orders are assumed

equally likely. We calculate the best and worst case values for the error

measures and report the average of them.

The worst attainable values of both measures may, at least in prin-

ciple, vary with k, and were estimated in the results (Figs. 1 and 2)

with random projections and with random neighborhoods.
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3.3 Results

We compared CCA, SOM and the new nonlinear projection methods

mentioned in the Introduction.

The methods having a number of neighbors parameter k were run

several times with values of k going from 4 to 20. Methods that do

not have a global optimum were run ten times on each data set, start-

ing from a different random initialization each time. The SOM size

was set such that the average number of data points in each unit was

about 2.7 on the mouse data and 5 on the other data sets. The SOM

neighborhood was decreased to one during the optimization. In each

case the result with the best trustworthiness was selected.

Trustworthiness and continuity. When trying to get insights

on a data point a human analyst usually looks at a handful (say 10)

data points around it. Thus it is very important that the visualization

preserves small neighborhoods well, that is, that the visualization is

trustworthy. It is clear from Figures 1 and 2 that in terms of trustwor-

thiness the CCA with either Euclidean distance or geodesic distance

(CDA) is the best or second best method on all data sets. SOM has

the best trustworthiness on the two bioinformatics data sets. On the

gene expression compendium SNE with graph distances is among the

best methods as well. SNE is very good at preserving the continuity

of the original neighborhoods. Both variants were the best or among

the best in this respect on all data sets except the gene expression

compendium data set. SNE with Euclidean distances was not able to
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Trustworthiness Continuity
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Figure 1: Trustworthiness and continuity of the mapping as a function of

k, the size of the neighborhood used in measuring them. Small neighbor-

hoods are the most important ones. a) Thick S-curve manifold, b) Clus-

ter data set. Rproj is the average value of 100 linear random projections.

The trustworthiness and continuity values of random neighborhoods are ap-

proximately 0.5. PCA: Principal component analysis, LLE: locally linear

embedding, Eigenmap: Laplacian eigenmap, CCA: Curvilinear component

analysis, CDA: CCA using geodesic distances, SOM: Self-organizing map,

SNE: stochastic neighbor embedding, SNEG: SNE using geodesic distances.
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Trustworthiness Continuity
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Figure 2: Trustworthiness and continuity of the mapping as a function of k,

the size of the neighborhood used in measuring them. Small neighborhoods

are the most important ones. a) Mouse gene expression, b) Gene expression

compendium. Key: see Fig. 1.
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PCA Isomap LLE

SNE SNEG Eigenmap

CCA CDA SOM

Figure 3: Sample visualizations produced with different methods on the

cluster data set. Key for the methods: see Fig. 1.
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produce any meaningful results on this data set, due to always getting

stuck in a local minimum in the early stages of the optimization. PCA

is also consistently quite good at preserving the continuity of original

neighborhoods. Both versions of CCA are typically among the worst

methods in this respect.

Euclidean vs. geodesic distance. There are three methods

with two variants: the other uses Euclidean distances and the other a

graph approximation of the geodesic distances. Which distance mea-

sure produces better results depends highly on the data set in question.

Of the data sets used here the mouse gene expression data sets a clear

case for the use of geodesic distances. On this data set the methods us-

ing geodesic distances outperformed their Euclidean counterparts with

a clear margin in both trustworthiness and continuity. On the other

hand, on the gene expression compendium the use of geodesic distances

seems to give slightly worse results than Euclidean distances. The ex-

ception here is SNE which failed to produce any meaningful results

with the Euclidean distance.

Quality of the visualizations. While the trustworthiness and

continuity measures give a good idea on how well the methods preserve

the local similarity structure in the data, they do not give the whole

picture on the quality of the visualizations. Examples of the visual-

izations produced by the different methods on the cluster data set are

shown in Figure 3. What one would expect to see in these visualiza-

tions is a set of six separate clusters, and hopefully the two-dimensional



Local multidimensional scaling 23

(S-shaped manifold) structure of one of the clusters would also be ev-

ident. By looking at the results of LLE and Laplacian eigenmap, it

is clear that the visualizations do not perform as well as expected. It

is very hard to identify the separate clusters from the LLE visualiza-

tion. Moreover, all clusters have been stretched to form mostly linear

structures. On the visualization produced by Laplacian eigenmap the

differences in the scales of distances are so large that it is not possi-

ble to discern any structure within the clusters. Only small blobs are

visible.

The visualizations produced by SNEG illustrate an artifact that

is typical for methods that utilize nearest neighbor information. The

graph distances overestimate distances within the manifold and pro-

duce clear “holes.” These are very clear on the SNEG visualization of

the S-curve cluster. This effect can be lessened in two ways. The first

is to select a method like CCA that relies mostly on local distances and

the second is to increase the number of neighbors. The latter means

has fixed the problem for isomap, where we had already used a very

large number (k=67 in comparison to k=7 (CDA) and k=4 (SNEG))

of neighbors to make the graph connected.

4 Controlling the tradeoff: Local MDS

Every visualization method has to make a tradeoff between gaining

a good trustworthiness and preserving the continuity of the mapping.

Some methods like SOM and CCA are typically good at finding solu-
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tions with a high trustworthiness, and others like SNE are very good

at preserving the continuity. We propose a new method, local MDS,

which is a derivative of CCA with the ability to control the tradeoff

between trustworthiness and continuity of the mapping.

The CCA cost function (7) penalizes errors in preserving distances

for points that are neighbors in the output space. This tends to produce

solutions with a high trustworthiness. The basic idea of the extension is

to add a similar term that penalizes errors for points that are proximate

in the input space. The tradeoff between these two terms, tunable

by a parameter λ, governs the tradeoff between trustworthiness and

continuity. The cost function of local MDS is

E =
1

2

∑

i

∑

j 6=i

[(1 − λ)(d(xi,xj) − d(yi,yj))
2F (d(yi,yj), σi)+

+ λ(d(xi,xj) − d(yi,yj))
2F (d(xi,xj), σi)]

=
1

2

∑

i

∑

j 6=i

(d(xi,xj) − d(yi,yj))
2×

× [(1 − λ)F (d(yi,yj), σi) + λF (d(xi,xj), σi)] , (16)

We optimize the cost function with the stochastic gradient descent

introduced for CCA in (Demartines & Hérault, 1997). During the op-

timization the radius of the area of influence around data point i, σi,

is slowly brought down. The final radius is set equal to the distance of

the Kth nearest neighbor of the data point i in the original space. A

small value of K will usually produce better values of trustworthiness

on small neighborhoods but at the same time the effectivity of λ in

controlling the tradeoff is reduced. The results shown here were pro-
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duced with K = 20. Setting λ = 0 results in a normal CCA projection

(with the difference that the end radius of the area of influence σi is

larger than zero and different for each data point; for CCA the end

radius of each data point is customarily reduced to zero).

We additionally tested a radius of influence which was the same for

each data point and was brought down to zero at the end of optimiza-

tion. The behavior was quite similar but a nonzero end neighborhood

makes controlling of the compromise more robust (reduces fluctuations

as a function of λ).

It is also possible to extend local MDS to use geodesic distances in

a similar manner as has earlier been done with CCA: Simply replace

the Euclidean distances with geodesic distances in the cost function.

In the next section we will present results for both versions.

4.1 Results with local MDS

The number of neighbors used in the graph approximation of the

geodesic distance was selected to be the same that produced the best

result on CDA. For each value of λ we ran the algorithm five times,

starting from different initial positions, and selected the result that

produced the best value of (16).

The effect of varying λ is illustrated in Fig. 4 where trustworthi-

ness and continuity (of a neighborhood of size 10) are plotted as a

function of λ. When λ is increased there is an overall tendency for

trustworthiness to decrease and continuity of original neighborhoods

to increase. Typical behavior of local MDS on different neighborhood
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Figure 4: The relationship between trustworthiness and continuity of the

mapping as a function of λ, for a neighborhood of size 10. Line with open

circles: Local MDS, line with ×s: Local MDS with geodesic distances.

Other methods are included (black dots with a name attached) for reference.

Methods not shown are too far down or to the left to fit in the image.
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sizes and with different values of λ is illustrated in Figure 5.

The performance of local MDS compares quite favorably to the

other methods tested in this paper. Although the main point of local

MDS is its ability to control the tradeoff between trustworthiness and

continuity, it is able to produce results that are very close to or better

than any of the other methods in either trustworthiness or continuity.

The exception is the SOM on the bioinformatics data sets. Even there

local MDS with geodesic distances outperforms all other methods.

Fig. 6 gives three examples of local MDS projections. Data that

lies on the surface of a sphere is projected first with λ = 0 and then

with λ = 0.1 and finally with λ = 0.9. When λ is zero local MDS

splits the sphere open, roughly into two discs. When λ is increased,

the edges, where continuity is violated the worst, get pulled closer

together to minimize the number of neighborhoods that become split,

and to reduce the distance between those neighborhoods that cannot

be connected.

There are two peculiarities in the results of local MDS in Figure

4. First, when using Euclidean distances there is a point (usually at

around λ = 0.2 . . . 0.5) after which continuity of the mapping may start

to decrease. This happens because the second part of the cost function

does not optimize continuity directly, but only indirectly. If λ is too

large, the unfolding effect of the first part of the cost function may not

be enough to keep the projection from folding on top of itself. This

is evident in the Figure 4 where on the mouse gene expression data

continuity first increases sharply and then starts to decline. Thus,
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Figure 5: Typical behavior of local MDS when λ is changed. a) Local

MDS illustrated on the S-curve manifold b) Local MDS with geodesic dis-

tances illustrated on the Mouse gene expression data. Results from stochas-

tic neighbor embedding (SNE) and Curvilinear component analysis (CCA)

are included for reference.
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Figure 6: Three projections of a three-dimensional spherical cell with local

MDS. On the left, trustworthiness of the projection is maximized by selecting

λ = 0. In the middle and right, discontinuity of the projection is penalized

as well, by setting λ = 0.1 and λ = 0.9, respectively.

based on empirical findings, we recommend that λ should be kept

within the range [0, 0.5] when Euclidean distances are used. Geodesic

distances seem to alleviate the problem. Overall, geodesic distances

seem to allow higher values of continuity to be reached.

Second, in Figure 4 on the Mouse gene expression data set both

versions of local MDS increase in trustworthiness when λ is changed

from 0 to 0.1. This behavior is easy to understand if we look at the full

trustworthiness curves in Figure 5b (curves for the Euclidean case are

similar). On this data set, when the parameter λ is zero, trustworthi-

ness is first high at very small neighborhoods but then drops relatively

fast. On the other hand, when λ = 0.1 trustworthiness is slightly lower

at the very small neighborhoods but the curve has a gentler slope. At

a neighborhood of size 10 the trustworthiness of local MDS with λ = 0

has already dropped below that produced when λ = 0.1.
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5 Discussion

In this paper we have utilized geodesic distances as a way to help unfold

the data for better visualization. The end goal has been to visualize

the Euclidean proximities. It can also alternatively be argued that the

geodesic distance, instead of the Euclidean distance, is the true metric

of the data. This line of thought can be followed by replicating the

experiments of this paper, but this time calculating the trustworthiness

and continuity values using geodesic distances. To be consistent, we

would not then talk about isomap, for instance, but of linear MDS in

the geodesic distance measure instead.

Utilizing geodesic distances can lead to better visualization results.

The downside is that the size of the neighborhood in the graph approx-

imation should be selected correctly for best results. Thus far there is

no simple way of doing the selection, and the methods have to be run

several times with different neighborhood sizes. This can be slow espe-

cially if the method has to be run several times from different starting

positions to avoid local minima.

6 Conclusions

We tested several different nonlinear dimensionality reduction meth-

ods. Of these, isomap, Laplacian eigenmap, and LLE are designed to

extract manifolds while SNE, CCA, and SOM are more generally tar-

geted for dimensionality reduction. One of the main tasks that these

methods are used for is visualization. Thus it is important to under-
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stand how they perform in typical visualization situations, and what

kinds of tradeoffs they make. Of the methods tested here only SOM

and CCA can be recommended for general visualization tasks where

high trustworthiness is required. If preservation of original neighbor-

hoods is required the linear method PCA is a good first choice followed

by SNE which can produce better results but is computationally heavy,

and prone to problems caused by local minima.

We introduced an extension of CCA called local MDS, that accord-

ing to the experimental results is capable of controlling the tradeoff

between trustworthiness and continuity of the projection.
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