
From learning metrics towards dependency exploration

Samuel Kaski
Laboratory of Computer and Information Science, Helsinki University of Technology, and

Department of Computer Science, University of Helsinki, Finland
samuel.kaski@hut.fi

Abstract - We have recently introduced new kinds of data fusion techniques, where the goal
is to find what is shared by data sets, instead of modeling all variation in data. They ex-
tend our earlier works on learning of distance metrics, discriminative clustering, and other
supervised statistical data mining methods. In the new methods the supervision is symmetric,
which translates to mining of dependencies. We have so far introduced methods for associa-
tive clustering and for extracting dependent components which generalize classical canonical
correlations.
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1 Introduction

We address the data-analytic problem of making a new kind of data fusion: How to extract
common properties in several data sets. While this problem recurs in several fields, the setting
is motivated in particular by new data-analysis challenges in bioinformatics.

One of the hardest challenges of modern biology and medicine, for which the need of bioinfor-
matics methods is widely recognized, is how to best use the new genome-wide measurement
technologies and the growing community-resource databanks of measurement data. They are
needed especially in systems biology, in understanding how the parts of the cell, and groups of
cells, function together. The data-analytic problems stem from measurement and biological
noise, that is, irrelevant variation that may even have structure which is unknown a priori.
Moreover, the research tasks are necessarily ill-defined: the ultimate goal is to make new
scientific findings, and it is not clear yet what kinds of findings are possible with the new
kinds of measurements.

The general problem setting, knowledge discovery from databases, has been recognized in
a branch of computer science called data mining. Mainstream data mining methods are
insufficient, however, because they cannot adequately handle the noise and the irrelevant
variation in the data. Mainstream statistics is not sufficient either, since in the absence of
sufficient prior knowledge the models need to be manually tailored to each task and databank,
which is too laborious for widespread use in the various research laboratories. Machine
learning addresses the problem of automating part of the modeling process, by aiming at
more general-purpose methods, but so far mostly in specific kinds of restricted learning tasks.
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Our main methodological goal is to combine the merits of the three different approaches into
new kinds of modeling tools, within a field that could be called statistical data mining.

In traditional unsupervised learning, a statistical machine learning approach applicable to
data mining, the data is a set of samples {x}, which may be either vectorial or discrete-valued.
The task is to find regularities in the data, usually in the density of the samples (clustering)
or in the relationships of the variables (component models). Common to both is that, in
probabilistic terms, the goal is to model the probability density p(x) of the data. This goal is
shared by much of statistical generative modeling; the distinctive feature in machine learning
is that there usually exists very little prior knowledge of the data generating mechanism, and
everything needs to be learned from data. The task of better understanding a data set by
searching for regularities in it could be called data exploration or unsupervised data mining.

Since it is very hard if not impossible to derive everything from data, we have studied methods
for inserting more knowledge into the mining task in a data-driven fashion. We work with
settings where there are two or more data sets with co-occurring samples, that is, samples
coming in pairs (x,y) where x belongs to the first set and y to the second set. Both samples
may be either discrete or continuous-valued. For such data two different kinds of classical
machine learning approaches are possible. If the samples are concatenated together to form
a single long vector, the problem reduces to standard unsupervised learning for modeling the
joint density p(x,y). The other task, called supervised learning, is to predict the values of
the other, say y, given x. The classical supervised tasks are to find classes (in classification)
or predicted values of a variable (in regression). In probabilistic terms the goal is to build a
good model for the conditional distribution p(y|x).

Our task is not equivalent to either of the two classical ones, but related. The goal is to
use the information contained in the relationship between well-chosen data set pairs {x} and
{y}, to direct mining of x (and later to symmetrically mine both x and y). Methods capable
of doing that are useful in situations where it is hard to specify prior knowledge into the
model structure, but it is easier to point out a collection of data sets sharing the interesting
properties and only them. Examples of such tasks are given in the following sections.

The general research problem is to find common properties in the set of pairs; statistically
speaking, the goal is to find statistical dependencies between the x and y. When applied
to statistical data mining, the models could be called dependency exploration methods; they
model the statistical dependencies between several data sets in order to find properties shared
by them. The methods are generalizations of our data analysis principle called learning
metrics [7, 9], where an adaptive distance measure is computed to focus on only relevant
or important differences between data samples, and neglect the irrelevant. The metric was
learned from paired data sets, and relevance was defined as relevance for the other data set.

A seemingly related task is to search for differences between data sets [3]. There the relative
order of the samples within the two sets is not significant, both sets are within the same space,
and the goal is to find differences between data distributions. The fundamental difference is
that our data are paired and we search for commonalities between the pairs of samples that
can have different variables (attributes) and different dimensionalities.
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2 Learning metrics and discriminative models

Completely unsupervised data mining is a tough task, since in the absence of prior knowledge
of model structures it is very hard or even impossible to distinguish interesting regularities
from noise. The reason is that interestingness is often related to unexpectedness, and noise
is by definition unpredictable and hence unexpected. Normally in probabilistic modeling this
problem is circumvented by restricting the search space by incorporating prior knowledge
either to the model structure or as the prior distribution of the parameters.

In data mining or data exploration prior knowledge usually is not available, since the goal is
to make new findings. Yet, it is clear that prior knowledge needs to be input to the analysis
process somehow—otherwise the analyst will put garbage in and get garbage out. The usual
way in unsupervised learning is through variable selection: When the data vector contains
only relevant or interesting variables, the unsupervised search for regularities in the data will
be carried out only among those interesting variables. This will presumably result in finding
of interesting regularities.

Variable selection may be hard, however, and moreover the variables need to be properly
normalized and put into a common scale, weighted by how important they are. In completely
unsupervised settings this all needs to be done manually. Realizing that the problem is much
less severe in supervised learning, where the variable selection and scaling can be done to
maximize prediction ability of the supervised model, we started thinking whether supervision
could be applicable in data mining as well.

The task of variable selection and preprocessing effectively boils down to selection of the met-
ric of the data space. Variable selection corresponds to binary weighting of the variables, and
weighting corresponds to having a specific kind of a distance matrix. Linear pre-processing,
on its part, corresponds to having a more general distance matrix. The most general kind of
distance matrix, which gives a Riemannian distance, is different in different locations of the
data space.

Given the task of mining the data x, without applicable prior knowledge but with co-occurring
data (x,y) available, we then wanted to extract useful information from the pairs to better
focus the analysis of x. The “auxiliary data” y had the same role of giving the “ground
truth” of what is important as in supervised learning, but the difference was that the task
was to explore x. The solution, coined the learning metrics principle [7], was to optimize the
metric of the data space to measure only the differences relevant to changes in the auxiliary
data. After this supervised preprocessing the mining of x can be unsupervised. Such data
mining using the learning metrics principle could be called supervised data mining since one
data set, the {y}, supervises the mining by telling what is important in the other, {x}.

The metric was defined by using information-geometric concepts, several methods were de-
veloped for estimating it, and the metric was applied to several unsupervised data analysis
algorithms [5, 9, 13], including the Self-Organizing Maps. The metric is generally applicable—
when used with a data mining method which assumes spherically symmetric noise, it effec-
tively transforms the model such that it assumes inhomogenous noise. There will be more
noise in the relatively less important directions, and hence the model will pay less attention
to them.
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An information-theoretically derived method cannot rigorously take into account all uncer-
tainties in small data sets. For this reason we developed alternative methods that maximize
a rigorous finite-data criterion, the likelihood of predicting the auxiliary data y given x. The
methods called discriminative clustering [8, 15] and relevant component analysis or “infor-
mative” discriminant analysis [12] can be shown to asymptotically operate using the learning
metrics.

3 Models of dependencies

In the learning metrics principle and the related discriminative models, the mining is asym-
metric with respect to x and y. The y is assumed to give the gold standard for selecting the
metric for x, that is, to supervise the mining of x. Next we wanted to make the supervision
symmetric.

Note that basic unsupervised learning, when applied to vectors x and y concatenated to-
gether, is symmetric in a trivial sense. All variation in the combination—including the
individual variation in x and in y—is modeled, and there is no mechanism for separating
between-data-set variation from within-data-set variation.

The task addressed in our current work is modeling only the variation in x and y that
is common to both variables. In other words, we search for dependencies between the x
and y. This symmetric goal can be formalized as maximizing the dependency between two
representations, x̂ ≡ fx(x;θx) and ŷ ≡ fy(y;θy), of x and y, respectively. Here the θ are
the parameters to be optimized, and the traditional measure of dependencies is the mutual
information. A familiar example is canonical correlation analysis [4] where both the fx and
fy are linear projections, and the data are assumed to be normally distributed. This idea has
earlier been generalized to nonlinear functions [1], and to finding clusters of x informative
of a nominal-valued y [2, 15] (discussed in the previous section). It has been formalized
in the information bottleneck framework [19, 17], resulting in efficient algorithms for two
nominal-valued variables [18, 14].

These kinds of dependency models focus on the variation that is common in the data sets, and
skip data set-specific variation. The theoretical difference from a commonly used modeling
paradigm, Bayes networks, is that in the absence of prior knowledge, these latter types of
models do not distinguish between data set-specific variation and variation common to both
data sets, and hence in this sense they make a compromise in our task.

Modeling of dependency between data sets is a new data mining target that is considerably
better-focused target than the common, fully unsupervised search for clusters and other
regularities. Yet it is general and data-driven. It is intended to be applicable in problems
when prior knowledge either is not available or cannot easily be incorporated in the model,
but where it is easier to collect a set of relevant data sets. An example is analysis of yeast
stress response. It is much harder to define stress response than it is to name stressful
treatments. Each data set consists of measurements of the yeast’s response to a different
stressful treatment, and while the response specific to any of the treatments is not interesting,
the response shared by all of them is. It defines stress.
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The above-mentioned information-theoretic derivations for maximizing dependency between
representations of x and y suffer from the same problem as the learning metrics: Since they
are defined for distributions, they are not rigorously applicable to finite data sets. We are
currently developing methods for dependency exploration or mining for finite data.

3.1 Associative clustering

The standard unsupervised clustering methods, reviewed for gene expression clustering for
instance in [11], aim at finding clusters where genes have similar expression profiles. Our goal
is different: to cluster the x and the y separately such that the dependencies between the
two clusterings capture as much as possible of the statistical dependencies between two sets
of clusters. In this sense the clustering is associative; it finds associations between samples
of different spaces.

Analogously to the two linear projections in canonical correlation analysis, we use two sets of
clusters as the representations in the dependency search. Clusters are more flexible than linear
projections, and they have a definite role in exploratory data analysis, that is, in “looking
at the data:” Clustering reveals outliers, finds groups of similar data, and simply compresses
numerous samples into a more manageable and even visualizable summary. Clusters and
other kinds of unsupervised models are of particular importance as the first step of microarray
data analysis, where data are often noisy and even erroneous, and in general not well-known
a priori.

Note that this very legitimate and necessary use of clustering in the beginning of the research
process should not be confused with the widespread use of clusterings as a general-purpose
tool in all possible research tasks, which could better be solved by other methods.

Associative clustering [6] builds on the insight [16] that discriminative clustering optimizes
the dependency between the clusters and the (multinomial) auxiliary data, measured from
their cross-tabulation into a contingency table. Dependencies in a contingency table can be
measured by a certain kind of a Bayes factor, which discriminative clustering optimizes.

The difference between discriminative clustering and associative clustering is that while in
the former the other margin of the contingency table is fixed by the fixed auxiliary data
and only the margin formed by the clusters is optimized, associative clustering optimizes
both margins. While this may seem to be a small change, the conceptual change is large.
Discriminative clustering can be interpreted as maximization of the conditional likelihood for
modeling p(y|x). We are not aware of any such finite-data probabilistic interpretation for
the symmetric task of associative clustering.

3.2 Dependent components

In associative clustering the x and the y are represented by indexes of their respective clusters,
and the dependencies can be measured from their cross-tabulation, the contingency table. In
component models the representations are continuous-valued linear projections.

Standard canonical correlation analysis assumes that both x and y are normally distributed,
which implies that their projections are as well, and the dependencies measured by mutual
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information reduce to correlations between the projected values.

We have extended canonical correlation to non-normally distributed data by measuring the
dependencies with non-parametric estimates [10]. The non-parametric dependent components
are computed by optimizing a finite-data criterion, the likelihood ratio, between a model
that assumes that the components of the two data sets are dependent vs. independent. The
dependency is measured with non-parametric Parzen estimators in the low-dimensional space
formed of the components. Asymptotically, for large data set, the criterion still converges to
mutual information, and in this sense the method generalizes canonical correlations.

4 Conclusion

This paper is a summary of our recent work from data mining supervised by another data
set to symmetric supervision between several data sets. We have developed a set of methods
which search for dependencies between data sets, applicable in a task which could be called
dependency mining.

The methods are applicable in settings where the variation specific to any single data set
is not interesting, and only the variation common to the sets counts. If a good model for
the data generating mechanism exists, including all variation in all data sets, the common
variation can be sought with standard probabilistic modeling of the joint density of the data.
If not, new methods targeting the common variation are needed.

While the supervised mining methods have already been applied to several information vi-
sualization methods, including the Self-Organizing Maps, the work in the dependency ex-
ploration methods has only been started. The dependent components generalize canonical
correlations by removing the restriction to normally distributed data. They can be used for
visualizing data, but the components are still linear. The next step is to generalize them
to non-linear components, where a Self-Organizing Map-type discrete approximation of the
visualized manifold is a viable option.
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