initialize.priors {RPA}R Documentation

Initialize prior parameter object for RPA.

Description

Creates a template for prior parameters using non-informative (or user-specified) priors. After creating the template, probe-specific priors can be set by modifying the default values. Current version supports priors are only for the probe-specific variances (i.e. priors alpha, beta).

Usage

initialize.priors(abatch, sets, alpha = 1e-6, beta = 1e-6, d = NULL)

Arguments

abatch An AffyBatch object.
sets Vector listing the probesets for which the prior template is created.
alpha Default template values for the alpha prior
beta Default template values for the beta prior
d Not used, included for later compatibility.

Details

Probesets that do not have predefined priors are analyzed using noninformative alpha, beta (1e-6). See the source code for RPA.iteration for details.

Value

An instance of 'rpa.priors' class.

Author(s)

Leo Lahti <leo.lahti@tkk.fi>

References

Probabilistic Analysis of Probe Reliability in Differential Gene Expression Studies with Short Oligonucleotide Arrays. Lahti et al., TCBB/IEEE, to appear. See http://www.cis.hut.fi/projects/mi/software/RPA/

Examples


require(affy)
require(affydata)
data(Dilution)

# List probesets to investigate
sets = geneNames(Dilution)[1:5]             

# Create a template for prior parameters using default priors
my.priors = initialize.priors(Dilution, sets, alpha = 1e-6, beta = 1e-6)

# Modify the template to provide user-specified prior for one of the
# probes
# high value implies an unreliable probe
set = sets[[1]]
probe.idx = 5
my.priors[[set]]$beta[[probe.idx]] = 10  
my.priors[[set]]$alpha[[probe.idx]] = 10

# Run RPA using the predefined priors
# NOTE: priors are only used with sigma2.method = "basic"
rpa.results <- RPA.pointestimate(Dilution,sets,
                                 priors=my.priors,
                                 sigma2.method = "basic", 
                                 d.method = "basic")

# This toy example shows the probe reliability values for the probeset
# where the user-specified prior was set for one of the probes
barplot(rpa.results$sigma2[[set]])


[Package RPA version 1.1.2 Index]