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Unbounded Updatable Encryption from LWE and PCE

Overview:

† Updatable public-key encryption (UPKE)
† PKE from learning with errors (LWE)
† Prior key-update mechanism
† Lattice isomorphism problem (LIP)
† Linear codes and permutation code equivalence (PCE)
† PCE-based key-update mechanism
† Summary and open problems
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UPKE

Public-Key Encryption (PKE)

Encrypt and decrypt

(pk, sk)← KGen(1λ) pk

msg←M
ctxt← Enc(pk,msg)

msg′ ← Dec(sk, ctxt)

Properties:

† Decryption Correctness: msg′ = msg.
† IND-CPA Security: (pk, Enc(pk,msg0)) ≈c (pk, Enc(pk,msg1)).

// IND-CPA = indistinguishability under chosen plaintext attack
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UPKE

Updatable Public-Key Encryption (UPKE)

Key update

(pk′, token)← UpdPK(pk)

token

sk′ ← UpdSK(sk, token)

sk′ pk′

Additional property:

† Update correctness: Decryption correctness holds for updated keys (pk′, sk′).
† IND-CR-CPA Security: (pk, Enc(pk,msg0), sk′) ≈c (pk, Enc(pk,msg1), sk′),

i.e. security of old ciphertexts still holds even if updated secret key is leaked. “Forward secrecy”.
// IND-CR-CPA = indistinguishability under chosen randomness and chosen plaintext attack
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Lattice-based PKE

How to construct post-quantum updatable PKE?
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Lattice-based PKE

Learning with errors (LWE)

Setting: Zq := Z/qZ, q prime, dimensions n > k .

LWE assumption: For A←$ Zn×k
q , x←$ Zk

q , short noise e←$ χn,

c = A x + e mod q,

it holds that
(A, c) ≈c (A, $).

Typically, χ = discrete Gaussian distribution or bounded uniform distribution with ∥χ∥ ≪ q.
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Lattice-based PKE

Dual-Regev encryption

Encrypt and decrypt

A←$ Zn×k
q

sk := u←$ χn

vT := uT · A mod q

pk = (A, v)
msg← {0, 1}
x←$ Zk

q ; e←$ χn; f ←$ χ

c := A · x + e mod q

d = vT · x + f +
⌊

q
2

⌉
· msg mod q

ctxt = (c, d)

msg′ ← (|d − uT · c mod q| < q/4)

† Correctness: u, e, f are short enough =⇒ Dual-Regev has decryption correctness.
† Security: LWE assumption =⇒ Dual-Regev is IND-CPA secure.
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Lattice-based PKE

Prior key-update mechanism
Recall: pk = (A, v) and sk = u←$ χn with vT = uT · A mod q.

Key update

û←$ χn

v̂T := ûT · A mod qtoken = û

sk′ := u′ := u + û
pk′ := (A, v′) where v′ := v + v̂ mod q
Note: A does not change.

Issue:

† Updated secret key sk′ = u′ has increased norm.
† To maintain correctness with many updates, either

1. restrict number of updates to be fixed a-priori, or
2. to supper arbitrary poly(λ) many updates, set super-polynomial modulus q > λω(1) =⇒ large ctxt.

Hollow LWE Russell W. F. Lai 7 / 18



Lattice-based PKE

Prior key-update mechanism
Recall: pk = (A, v) and sk = u←$ χn with vT = uT · A mod q.

Key update
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Lattice-based PKE

The question

How to support unbounded poly(λ) many key updates with a poly(λ) size modulus q?
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Lattice isomorphism problem (LIP)

q-ary Lattices

† A lattice Λ ⊆ Rn is a discrete additive subgroup of Rn, i.e.

Λ = B · Zr

for some basis B ∈ Rn×r where r ≤ n.
† All bases B,B′ ∈ Rn×r are related by unimodular U ∈ Zr×r via B′ = B · U.
† Define the “primal lattice” a.k.a. the “Construction A” lattice of A ∈ Zn×k

q :

Λq(A) = A · Zk + q · Zn.

† Note that Λq(A) is “q-ary”, i.e.
q · Zn ⊆ Λq(A) ⊆ Zn.
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Lattice isomorphism problem (LIP)

LWE and Dual-Regev: Lattice point of view

† LWE assumption: (A,A · x + e mod q) ≈c (A, $).
† Lattice point of view:

(A,U(Λq(A)) + χn) ≈c (A,U(Zn
q)).

† A Dual-Regev secret key is a short vector

u ∈ Λv
q(A) :=

{
w ∈ Zn : wT · A = vT mod q

}
which is a random lattice coset of the “kernel lattice”

Λ⊥
q (A) :=

{
w ∈ Zn : wT · A = 0T mod q

}
.
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Lattice isomorphism problem (LIP)

Lattice isomorphism problem (LIP), decision version

Lattice isomorphism

Lattices Λ,Λ′ are isomorphic, denoted Λ ∼ Λ′, if there exists orthogonal matrix O ∈ On(R), i.e.

O ∈ Rn×n with OT · O = In,

such that
Λ′ = O · Λ,

i.e. Λ′ can be obtained by rotating and reflecting Λ.
If B and B′ are bases of Λ and Λ′, then it means B′ = O · B · U for some unimodular U ∈ Zr×r .

Lattice isomorphism problem (LIP)

Given lattices Λ,Λ0,Λ1 ⊆ Rn, decide if

Λ ∼ Λ0 or Λ ∼ Λ1.
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Lattice isomorphism problem (LIP)

Rotate keys with LIP?

Prior method: Adding noise

· · ·

New method: Rotating keys

· · ·
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Lattice isomorphism problem (LIP)

Rotate keys with LIP?

The idea, more concretely

† Rotate A to A′ := O · A · U mod q.
† Rotate u to u′ := O · u mod q.
† Update v to v′ := UT · v mod q.

Issue

Orthogonal matrices O ∈ On(R) are real-valued.
=⇒ O · A · U and O · u may not be integral.
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Lattice isomorphism problem (LIP)

Lattice automorphism of Zn

† The automorphism group Aut(Λ) of a lattice Λ is the group of all isomorphisms from Λ to itself.
† It is well-known that Aut(Zn) = On(Z), i.e. the group of signed permutation matrices

On(Z) =
{

D · P ∈ {−1, 0, 1}n×n : D ∈ diag({±1}n), P permutation matrix
}
.

† Since
q · Zn ⊆ Λq(A) ⊆ Zn,

we have
q · Zn ⊆ O · Λq(A) ⊆ Zn,

i.e. rotating Λq(A) by O ∈ On(Z) gives another q-ary lattice.
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Lattice isomorphism problem (LIP)

Coding theory point of view

† The “primal lattice” a.k.a. the “Construction A” lattice of A ∈ Zn×k
q

Λq(A) = A · Zk + q · Zn

is isomorphic to the Zq-linear code C = A · Zk
q generated by A.

† The (signed) permutation code equivalence ((S)PCE) problem is to decide if two codes C and C′ are
equivalent by a (signed) permutation matrix, i.e. whether

C′ = O · C

for some (signed) permutation matrix O ∈ On(Z).
† SPCE is essentially LIP with Λ restricted to q-ary lattices and O restricted to signed permutations.
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PCE-based key-update mechanism

PCE-based key-update mechanism
Recall: pk = (A, v) and sk = u←$ χn with vT = uT · A mod q.

Key update

O←$ On(Z)
U : O · A · U = NormalForm(O · A) mod qtoken = O

sk′ := u′ := O · u pk′ := (A′, v′) := (O · A · U,UT · v) mod q

Update correctness:

(u′)T · A′ = uT · OT · O · A · U = uT · A · U mod q = vT · U = (v′)T mod q.
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PCE-based key-update mechanism

Caution

To make the idea provably secure from reasonable assumptions, we need to be cautious:

† For the hardness of (S)PCE, the hull of the code C = A · Zk
q is important.

† HullH(A) := C ∩ C⊥, where C⊥ =
{

b ∈ Zn
q : bT · C = 0T

}
.

† Random A has trivial hull dimension, i.e. H(A) = ∅ or h = dim(H(A)) = 0, w.h.p.
† Existing attacks against PCE run in time O(qh) or O(nh), i.e. efficient when h is small.

Solution:

1. Sample A such that h = dim(H(A)) is sufficiently large. We call these “h-hollow matrices”.

2. Prove that LWE w.r.t. h-hollow matrices is as hard as LWE w.r.t. random matrices (i.e. h = 0).

3. Prove that the leftover hash lemma holds for h-hollow matrices.

4. Prove the the UPKE is IND-CR-CPA secure under the h-hollow LWE assumption and the PCE
assumption for h-hollow matrices (in the random oracle model).
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Summary and open problems

Summary

† New unbounded key-update mechanism for lattice-based cryptosystems
† Applied to PKE =⇒ Updatable PKE

Open Problems

† Application to other primitives? Other existing techniques compatible with h-hollow matrices?
† Ring/module setting for efficiency? Related to re-using the same rotation more than once.
† More choices of rotation?

E.g. characterise all rotations from a q-ary lattice to another q-ary lattice?
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