GPstuff - Gaussian process models for Bayesian analysis 4.7
Can be used with Matlab, Octave and R (see below)
Corresponding authors: Jarno Vanhatalo (primary), Aki Vehtari
Reference
If you use GPstuff, please use the reference (available online):
-
Jarno Vanhatalo,
Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville
Tolvanen, and Aki Vehtari (2013). GPstuff: Bayesian
Modeling with Gaussian Processes. Journal of Machine
Learning Research, 14(Apr):1175-1179.
Latest release
Mailing lists
- To get release announcements, you can subscribe to
the GPstuff Announcement Mailing List.
- Or subscribe to announcements at mloss.org by clicking the tiny letter symbol on the second line showing the last update date and time.
About
The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.
The GPstuff toolbox works (at least) with Matlab versions r2009b (7.9)
or newer (older versions down to 7.7 should work also, but the code is
not tested with them). Most of the functionality works also with
Octave (3.6.4 or newer, see release notes for details). Most of the
code is written in m-files but some of the most computationally
critical parts have been coded in C.
The GPstuff-toolbox has been developed by BECS Bayes group, Aalto
University. The coding of the GPstuff-toolbox started in 2006 based
on the MCMCStuff-toolbox
(1998-2006), which was based
on Netlab-toolbox
(1996-2001). The main authors of the GPstuff have been Jarno
Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville
Tolvanen and Aki Vehtari, but the package contains code written by
many more people.
At Aalto University these persons are (in alphabetical order): Toni
Auranen, Pasi Jylänki, Jukka Koskenranta, Enrique Lelo de Larrea Andrade, Tuomas Nikoskinen, Tomi Peltola, Eero Pennala,
Heikki Peura, Ville Pietiläinen, Markus Siivola, Arno Solin, Simo Särkkä and
Ernesto Ulloa. People outside Aalto University are (in alphabetical
order): Christopher M. Bishop, Timothy A. Davis, Matthew D. Hoffman,
Kurt Hornik, Dirk-Jan Kroon, Iain Murray, Ian T. Nabney, Radford
M. Neal and Carl E. Rasmussen. We want to thank them all for sharing
their code under a free software license.
License
This software is distributed under the GNU General Public License
(version 3 or later); please refer to the file License.txt, included
with the software, for details.
Using GPstuff from R
Instructions for using GPstuff from R.
Features of the toolbox
User guide.
Covariance and mean functions
- Several covariance functions (e.g. squared exponential,
exponential, Matérn, periodic and a compactly supported piece wise polynomial function)
- Sums, products and scaling of covariance functions
- Euclidean and delta distance
- Several mean functions with marginalized parameters
Likelihood/observation models
- Continuous observations: Gaussian, Gaussian scale mixture (MCMC
only), Student's-t, quantile regression
- Classification: Logit, Probit, multinomial logit (softmax), multinomial probit
- Count data: Binomial, Poisson, (Zero truncated) Negative-Binomial, Hurdle model, Zero-inflated Negative-Binomial, Multinomial
- Survival: Cox-PH, Weibull, log-Gaussian, log-logistic
- Point process: Log-Gaussian Cox process
- Density estimation and regression: logistic GP
- Monotonicity information (EP only)
- Other: derivative observations (for sexp covariance function only)
Priors for parameters (theta)
- Several priors, Hierarchical priors
Sparse models
- Sparse matrix routines for compactly supported covariance functions
- Fully and partially independent conditional
(FIC, PIC)
- Compactly supported plus FIC (CS+FIC)
- Variational sparse (VAR), Deterministic training
conditional (DTC), Subset of regressors (SOR) (Gaussian/EP only)
- PASS-GP
Latent inference
- Exact (Gaussian only)
- Laplace, Expectation propagation (EP), Parallel EP, Robust-EP
- Marginal posterior corrections (cm2 and fact)
- Scaled Metropolis, Hamiltonian Monte Carlo (HMC), Scaled HMC, Elliptical slice sampling
- State space inference (1D for some covariance functions)
Hyperparameter inference
- Type II ML/MAP
- Leave-one-out cross-validation (LOO-CV), Laplace/EP LOO-CV
- Metropolis, HMC, No-U-Turn-Sampler (NUTS), Slice Sampling (SLS), Surrogate SLS, Shrinking-rank SLS, Covariance-matching SLS
- Grid, CCD, Importance sampling
Model assessment
- LOO-CV, Laplace/EP LOO-CV, Integrated IS-LOO-CV, k-fold-CV
- WAIC, DIC
- Average predictive comparison
Contents of the toolbox
The contents of the toolbox can be examined here.
Demos
There are many demos in the toolbox. Here are few of them:
- demo_regression1:
A regression demo for full GP, compact support GP, FIC
and PIC.
- demo_classific: A
classification problem.
- demo_spatial1: A disease
mapping problem with FIC sparse GP approximation.
- demo_births: Demonstration of
analysis of birthday frequencies in USA 1969-1988 using Gaussian
process with several components.
- demo_lgcp: Demonstration of point process intensity estimation using discretized nonhomogenous Poisson process also known as Log Gaussian Cox process.
- demo_lgpdens: Demonstration of
1D and 2D density estimation and density regression using logistic Gaussian process
- demo_monotonic2: Demonstration of
the use of monotonicity information with Gaussian processes
References
If you use GPstuff, please use the reference (available online):
-
Jarno Vanhatalo,
Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville
Tolvanen, Aki Vehtari (2013). GPstuff: Bayesian
Modeling with Gaussian Processes. Journal of Machine
Learning Research, 14(Apr):1175-1179.
GPstuff has also been used, for example, in the following publications:
- Meri Kallasvuo, Jarno Vanhatalo and Lari Veneranta (in press). Modeling the
spatial distribution of larval fish abundance provides essential information
for management. Canadian Journal of Fisheries and Aquatic Sciences.
Online.
-
Jarno Vanhatalo, Geoffrey R. Hosack and Hugh Sweatman (2017). Spatio-temporal
modelling of crown-of-thorns starfish outbreaks on the Great Barrier Reef to
inform control strategies. Journal of Applied Ecology, 54:188-197.
Online.
-
Mikko Kotilainen, Jarno Vanhatalo, Mikko Suominen, and Pentti Kujala (2017).
Predicting ice-induced load amplitudes on ship bow conditional on ice thickness
and ship speed in the Baltic Sea.. Cold Regions Science and Technology, 135:
116-126.
Online.
-
Lari Veneranta, Jarno Vanhatalo and Lauri Urho (2016). Detailed temperature
mapping - warming characterizes archipelago zones. Estuarine, Coastal & Shelf
science, 182:123-135.
Online.
-
Jarno Vanhatalo, Alistair J. Hobday, Richard L. Little. and Claire M. Spillman
(2016). Downscaling and extrapolating dynamic seasonal marine forecasts for
coastal ocean users. Ocean Modelling, 100:20-30.
Online.
- Eero Siivola, Juho Piironen and Aki Vehtari (2016). Automatic monotonicity
detection for Gaussian Processes. arXiv preprint.
- Olli-Pekka Koistinen, Emile Maras, Aki Vehtari and Hannes Jónsson (2016).
Minimum energy path calculations with Gaussian process regression. In
Nanosystems: Physics, Chemistry, Mathematics, 7(6):925-935.
Online.
- Heikki Joensuu, Eva Wardelmann, Harri Sihto, Mikael Eriksson, Kirsten Sundby
Hall, Annette Reichardt, Jörg T. Hartmann, Daniel Pink, Silke Cameron, Peter
Hohenberger, Salah-Eddin Al-Batran, Marcus Schlemmer, Sebastian Bauer, Bengt
Nilsson, Raija Kallio, Jouni Junnila, Aki Vehtari and Peter Reichardt (2016).
Effect of KIT and PDGFRA Mutations on Survival in Patients With
Gastrointestinal Stromal Tumor Treated With Adjuvant Imatinib: An Analysis of a
Randomized Trial. In JAMA Oncology, accepted for publication.
- Juho Piironen and Aki Vehtari (2016). Projection predictive model selection
for Gaussian process models. In 2016 IEEE 26th International Workshop
on Machine Learning for Signal Processing (MLSP),
doi:10.1109/MLSP.2016.7738829. Preprint,
Online.
- Aki Vehtari, Tommi Mononen, Ville Tolvanen, Tuomas Sivula and Ole Winther
(2016). Bayesian leave-one-out cross-validation approximations for Gaussian
latent variable models. Journal of Machine Learning Research, 17(103):1-38.
Online.
- Ville Tolvanen, Pasi Jylänki and Aki Vehtari
(2014). Expectation propagation for nonstationary heteroscedastic
Gaussian process regression. In Proceedings of IEEE
International Workshop on Machine Learning for Signal Processing. Preprint
-
Jaakko Riihimäki and Aki Vehtari (2014). Laplace
approximation for logistic Gaussian process density
estimation and regression. Bayesian analysis, 9(2):425-448. Online 3 February, 2014.
- Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari and Donald B. Rubin (2013). Bayesian Data Analysis, Third Edition. Chapman and Hall/CRC. Publisher's webpage for the book. Home page for the book.
- Arno Solin and Simo Särkkä (2014). Hilbert space methods for
reduced-rank Gaussian process regression. arXiv:1401.5508.
-
Heikki Joensuu, Peter Reichardt, Mikael Eriksson, Kirsten
Sundby Hall and Aki Vehtari (2013). Gastrointestinal stromal
tumor: A method for optimizing the timing of CT scans in the
follow-up of cancer patients. Radiology, 271(1):96-106. Online 18 November, 2013. Preprint of the statistical appendix.
-
Aki Vehtari and Heikki Joensuu (2013). A Gaussian processes model for survival analysis with
time dependent covariates and interval censoring. Poster presented at The Third Workshop on Bayesian Inference for Latent Gaussian Models with Applications.
-
Jarmo Rantonen, Aki Vehtari, Jaro Karppinen, Satu Luoto, Eira
Viikari-Juntura, Markku Hupli, Antti Malmivaara and Simo Taimela
(2013). Face-to-face information in addition to a booklet
versus a booklet alone for treating mild back pain, a
randomized controlled trial. Scandinavian journal of Work
Environment & Health. Online.
- Mari Myllymäki, Aila Särkkä and Aki Vehtari
(2013). Hierarchical second-order analysis of replicated spatial
point patterns with non-spatial covariates. Spatial Statistics, in press. Online 13 August, 2013. PDF.
-
Aki Vehtari, Karita Reijonsaari, Olli-Pekka Kahilakoski, Markus V. Paananen,
Willem van Mechelen, and Simo Taimela (2013). The Influence of Selective Participation in a Physical Activity Intervention on the Generalizability of Findings. Journal of Occupational and Environmental Medicine,
56(3):291 297. Online
13 January 2014
- Jaakko Riihimäki,
Pasi Jylänki and Aki Vehtari (2013). Nested Expectation
Propagation for Gaussian Process Classification with a
Multinomial Probit Likelihood. Journal of Machine
Learning Research, 14(Jan):75-109. Available online. Part of GPstuff v4.1 and later.
- Lari Veneranta, Richard Hudd and Jarno Vanhatalo (2013). Reproduction areas of sea-spawning Coregonids reflect the environment in shallow coastal waters. Marine Ecology Progress Series, 477:231-250.
- Jarno Vanhatalo, Laura Tuomi, Arto Inkala, Inari Helle, and Heikki Pitkänen (2013). Probabilistic Ecosystem Model for Predicting the Nutrient Concentrations in the Gulf of Finland under Diverse Management Actions. Environmental Science & Technology, 47(1):334-341.
- Sourav Bhattacharya, Santi Phithakkitnukoon, Petteri Nurmi, Arto Klami, Marco Veloso, Carlos Bento (2013). Gaussian process-based predictive modeling for bus ridership. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, 1189-1198.
- Ji-Eun Kang, Young-Jin Kim, Ki-Uhn Ahn and Cheol-Soo Park
(2013). Gaussian process emulator for optimal operation of a high rise
office building. In Proceedings of BS2013: 13th Conference of
International Building Performance Simulation Association, Chambéry,
France, 2225-2231.
- Young-Jin Kim, Ki-Uhn Ahn, Cheol-Soo Park and In-Han Kim
(2013). Gaussian emulator for stochastic optimal design of a double glazing system. In Proceedings of BS2013: 13th Conference of
International Building Performance Simulation Association, Chambéry,
France, 2217-2224.
- Zhuang Tian, Dongdong Weng, Jianying Hao, Yupeng Zhang and Dandan Meng (2013). A data driven BRDF model based on Gaussian process regression. In Proc. SPIE 9042, 2013 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, 904211.
- Mahdi Biparva (2013). Novel multistage probabilistic kernel
modeling in handwriting recognition. Master's thesis, Concordia
Univeristy, Canada.
- Jarno Vanhatalo, Lari Veneranta and Richard Hudd (2012). Species
Distribution Modelling with Gaussian Processes: a Case Study with
the Youngest Stages of Sea Spawning Whitefish (Coregonus lavaretus
L. s.l.) Larvae. Ecological Modelling, 228:49-58.
- Teppo Juntunen, Jarno Vanhatalo, Heikki Peltonen and Samu
Mäntyniemi (2012). Bayesian spatial multispecies modelling to
assess pelagic fish stocks from acoustic- and trawl-survey data.
ICES Journal of Marine Science, 69: 95-104.
- Perry Groot and Peter Lucas (2012). Gaussian Process Regression
with Censored Data Using Expectation Propagation. In Sixth
European Workshop on Probabilistic Graphical Models, Granada,
Spain, 115-122.
- Posiva Oy (2012). Olkiluoto Site Description 2011,
1028 pages. ISBN
978-951-652-179-7. Online. (GPstuff
was used to model the distribution of fracture groundwaters salinities
at the Olkiluoto nuclear waste repository site.)
- Girma Kejela (2012). Short-term Forecasting of Electricity
Consumption using Gaussian Processes. Master's thesis, University of
Agder, Norway.
- Heikki Joensuu,
Aki Vehtari, Jaakko Riihimäki, Toshirou Nishida, Sonja E
Steigen, Peter Brabec, Lukas Plank, Bengt Nilsson, Claudia
Cirilli, Chiara Braconi, Andrea Bordoni, Magnus K Magnusson,
Zdenek Linke, Jozef Sufliarsky, Federico Massimo, Jon G
Jonasson, Angelo Paolo Dei Tos and Piotr Rutkowski (2011).
Risk of gastrointestinal stromal tumour recurrence after
surgery: an analysis of pooled population-based cohorts. In
The Lancet Oncology, 13(3):265-274.
Published Online: 07 December 2011.
- Pasi Jylänki,
Jarno Vanhatalo and Aki Vehtari (2011). Robust Gaussian Process
Regression with a Student-t Likelihood.
Journal of Machine Learning Research, 12:3227-3257 (available
online).
The EP implementation described in the paper is
included in the GPstuff toolbox. See also
a short demo on the
regression examples described in the paper.
- Jorma Rantonen, Satu
Luoto, Aki Vehtari, Markku Hupli, Jaro Karppinen, Antti Malmivaara and
Simo Taimela (2011). The effectiveness of two active interventions
compared to self-care advice in employees with non-acute low back
symptoms. A randomised, controlled trial with a 4-year follow-up in
the occupational health setting. Occupational and
Environmental Medicine, oem.2009.054312 (Available online 20 May 2011)
- Zhihua Zhang, Guang Dai and Michael I. Jordan (2011). Bayesian Generalized Kernel Mixed Models. Journal of Machine Learning Research 12:111-139.
- J. Zico Kolter and Joeseph Ferreira Jr. (2011). A Large-Scale Study on Predicting and
Contextualizing Building Energy Usage. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, 1349-1356.
- Jarno Vanhatalo, Ville Pietiläinen and Aki Vehtari
(2010). Approximate inference for disease mapping with
sparse Gaussian processes. Statistics in
Medicine, 29(15):1580-1607. online
- Jarno Vanhatalo, Pia Mäkelä ja Aki Vehtari
(2010). Alkoholikuolleisuuden alueelliset erot Suomessa
2000-luvun alussa. Yhteiskuntapolitiikka,
75(3):265-273 (Available
online
in Finnish) (English
translation) (Online maps in Finnish)
- Jaakko Riihimäki
and Aki Vehtari (2010). Gaussian processes with monotonicity
information. Journal of Machine Learning Research:
Workshop and Conference Proceedings, 9:645-652, AISTATS2010
special issue. (abstract, PDF)
- Jarno Vanhatalo
and Aki Vehtari (2010). Speeding up the binary Gaussian process
classification. In Proceedings of the 26th Conference on
Uncertainty in Artificial Intelligence (UAI 2010), AUAI
Press. (Available online).
- Jarno Vanhatalo, Pasi Jylänki and Aki Vehtari
(2009). Gaussian process regression with
Student-t likelihood. In Bengio et al, editors,
Advances in Neural Information Processing Systems
22, pp. 1910-1918, NIPS Foundation (Available online)
- Jarno Vanhatalo and Aki Vehtari (2009). Discussion to
'Approximate Bayesian inference for latent Gaussian models
by using integrated nested Laplace approximations' by
Håvard Rue, Sara Martino and Nicolas Chopin.
Journal of the Royal Statistical Society, Series B
(Statistical Methodology)., 71(2):383 (Available online
6 April 2009)
- Jarno Vanhatalo and Aki Vehtari (2008). Modelling
local and global phenomena with sparse Gaussian
processes. Proceedings of the 24th Conference on
Uncertainty in Artificial Intelligence. (PDF)
- Jarno Vanhatalo and Aki Vehtari (2007). Sparse Log
Gaussian Processes via MCMC for Spatial
Epidemiology. JMLR Workshop and Conference
Proceedings, 1:73-89. (Gaussian Processes in
Practice) (PDF)
(Slides
related to the paper in PDF)