Publications
2016
-
G. Babazadeh Eslamlou, A. Jung, N. Goertz, M. Fereydooni. Graph signal
recovery from incomplete and noisy information using approximate message
passing. In Proceedings of the 41st International Conference on
Acoustics, Speech, and Signal Processing (ICASSP '16), IEEE,
6170-6174, 2016. [pdf]
-
S. Aridhi, M. Brugnara, A. Montresor, and Y. Velegrakis. Distributed
k-core decomposition and maintenance in large dynamic graphs. In
Proceedings of the 10th ACM International Conference on Distributed and
Event-based Systems (DEBS '16). Irvine, CA, USA, 161-168, 2016. [pdf]
-
S. Aridhi, A. Montresor, and Y. Velegrakis. BLADYG: A Novel
Block-Centric Framework for the Analysis of Large Dynamic Graphs. In
Proceedings of the ACM Workshop on High Performance Graph Processing (HPGP '16). Kyoto, Japan, 39-42, 2016. [pdf]
-
A. Jung, Y. C. Eldar and N. Gortz. On the Minimax Risk of Dictionary
Learning. IEEE Transactions on Information Theory, vol. 62, no.
3, pp. 1501-1515, 2016. [pdf]
-
S. Aridhi, H. Sghaier, M. Zoghlami, M. Maddouri and E. Mephu Nguifo.
Prediction of ionizing radiation resistance in bacteria using a multiple
instance learning model. Journal of Computational Biology (JCB),
23(1): 10-20, 2016. [pdf]
2015
- A. Jung. Learning the Conditional Independence Structure of
Stationary Time Series: A Multitask Learning Approach. In IEEE
Transactions on Signal Processing, vol.63, no.21, pp.5677-5690,
Nov.1, 2015. [pdf]
-
A. Jung, G. Hannak, N. Goertz. Graphical LASSO based Model Selection for
Time Series. IEEE Signal Process. Lett., 22(10): 1781-1785, 2015.
[pdf]
- G. Hannak, M. Mayer, A. Jung, G. Matz, N. Goertz. Joint channel estimation and activity detection for multiuser communication systems.
In Communication Workshop (ICCW), pp.2086-2091, 8-12 June 2015.
-
S. Aridhi, P. Lacomme, L. Ren, B. Vincent. A MapReduce-based approach
for shortest path problem in large-scale networks. Engineering
Applications of Artificial Intelligence, Elsevier, 41, pp. 151-165,
2015, ISSN 0952-1976. [pdf]
-
S. Aridhi, L. d'Orazio, M. Maddouri and E. Mephu Nguifo. Density-based
data partitioning strategy to approximate large-scale subgraph mining.
Information Systems, Elsevier, 48, pp. 213-223, 2015, ISSN
0306-4379. [pdf]
-
S. Aridhi, L. d'Orazio, M. Maddouri and E. Mephu Nguifo.
Cost Models for Distributed Pattern Mining in the Cloud. in IEEE
International Conference on Big Data Science and Engineering, vol.2,
pp.112-119, 20-22 Aug. 2015, Helsinki, Finland. [pdf]
2014
-
N. Goertz, G. Chunli, A. Jung, M.E. Davies, G. Doblinger. Iterative Recovery of Dense Signals from Incomplete Measurements. in IEEE Signal Processing Letters, vol.21, no.9, pp.1059-1063, Sept. 2014.
-
A. Jung, S. Schmutzhard, F. Hlawatsch. The RKHS Approach to Minimum Variance Estimation Revisited: Variance Bounds, Sufficient Statistics, and Exponential Families, in IEEE Transactions on Information Theory, vol.60, no.7, pp.4050-4065, July 2014.
-
A. Jung, S. Schmutzhard, F. Hlawatsch, Z. Ben-Haim, Y.C. Eldar. Minimum Variance Estimation of a Sparse Vector Within the Linear Gaussian Model: An RKHS Approach, in IEEE Transactions on Information Theory, vol.60, no.10, pp.6555-6575, Oct. 2014.
-
G. Hannak, A. Jung, N. Goertz. On the information-theoretic limits of
graphical model selection for Gaussian time series, in Proceedings of
the 22nd European Signal Processing Conference (EUSIPCO), vol., no., pp.516-520, 1-5 Sept. 2014. [pdf]
-
A. Jung, Y.C. Eldar, N. Gortz. Performance limits of dictionary learning
for sparse coding, in Proceedings of the 22nd European Signal
Processing Conference (EUSIPCO), vol., no., pp.765-769, 1-5 Sept. 2014.
-
A. Jung, R. Heckel, H. Bolcskei, F. Hlawatsch. Compressive nonparametric
graphical model selection for time series, in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), vol., no., pp.769-773, 4-9 May 2014. [pdf]
2013
- A. Jung, G. Taubock, F. Hlawatsch. Compressive Spectral Estimation for Nonstationary Random Processes. In IEEE Transactions on Information Theory, 59(5): 3117-3138, 2013.
- S. Aridhi, H. Sghaier, M. Maddouri and E. Mephu Nguifo.
Computational phenotype prediction of ionizing-radiation-resistant
bacteria with a multiple-instance learning model. In Proceedings of
the 12th International Workshop on Data Mining in Bioinformatics (BioKDD '13). ACM, New York, NY, USA, 18-24. [pdf]